This strategy is a bidirectional adaptive range filtering momentum tracking strategy. It uses an adaptive range filter to track price fluctuations and combines volume indicators to determine the direction of value, in order to implement low buying and high selling.
Use an adaptive range filter to track price fluctuations. The size of the filter is adjusted adaptively according to the user-defined range period, quantity and scale.
There are two types of filters: Type 1 and Type 2. Type 1 is a standard range tracking type, and Type 2 is a stepped rounding type.
Determine the direction of price fluctuation based on the relationship between the filter and the closing price. Above the upper rail is bullish, and below the lower rail is bearish.
Combined with the rise and fall of the closing price compared to the previous day, determine the direction of value. Value rising is bullish and value falling is bearish.
Issue a buy signal when the price breaks through the upper track and the value rises; Issue a sell signal when the price breaks through the lower track and the value falls.
The adaptive range filter can accurately capture market fluctuations.
Two types of filters can meet different trading preferences.
Combining volume indicators can effectively identify value direction.
The strategy is flexible and parameters can be adjusted according to market conditions.
Customizable trading condition logic.
Improper parameter settings may lead to overtrading or missing trades.
Breakout signals have a certain lag.
Volume indicators have a certain risk of stalling.
Range breaks are prone to being trapped.
Risk Prevention:
Choose appropriate parameter combinations and adjust them in a timely manner.
Combine other indicators to identify trends.
Trade cautiously around key levels and trend reversals.
Test different combinations of range sizes and smoothing cycles to find the optimal combination.
Try different types of filters and choose your preferred type.
Experiment with other volume indicators or auxiliary technical indicators.
Optimize and adjust trading condition logic to reduce irrational trading.
Incorporate market theorems to set adaptive position sizing.
/*backtest start: 2023-01-17 00:00:00 end: 2024-01-23 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=4 strategy("Range Filter [DW] & Labels", shorttitle="RF [DW] & Labels", overlay=true) //Conditional Sampling EMA Function Cond_EMA(x, cond, n)=> var val = array.new_float(0) var ema_val = array.new_float(1) if cond array.push(val, x) if array.size(val) > 1 array.remove(val, 0) if na(array.get(ema_val, 0)) array.fill(ema_val, array.get(val, 0)) array.set(ema_val, 0, (array.get(val, 0) - array.get(ema_val, 0))*(2/(n + 1)) + array.get(ema_val, 0)) EMA = array.get(ema_val, 0) EMA //Conditional Sampling SMA Function Cond_SMA(x, cond, n)=> var vals = array.new_float(0) if cond array.push(vals, x) if array.size(vals) > n array.remove(vals, 0) SMA = array.avg(vals) SMA //Standard Deviation Function Stdev(x, n)=> sqrt(Cond_SMA(pow(x, 2), 1, n) - pow(Cond_SMA(x, 1, n), 2)) //Range Size Function rng_size(x, scale, qty, n)=> ATR = Cond_EMA(tr(true), 1, n) AC = Cond_EMA(abs(x - x[1]), 1, n) SD = Stdev(x, n) rng_size = scale=="Pips" ? qty*0.0001 : scale=="Points" ? qty*syminfo.pointvalue : scale=="% of Price" ? close*qty/100 : scale=="ATR" ? qty*ATR : scale=="Average Change" ? qty*AC : scale=="Standard Deviation" ? qty*SD : scale=="Ticks" ? qty*syminfo.mintick : qty //Two Type Range Filter Function rng_filt(h, l, rng_, n, type, smooth, sn, av_rf, av_n)=> rng_smooth = Cond_EMA(rng_, 1, sn) r = smooth ? rng_smooth : rng_ var rfilt = array.new_float(2, (h + l)/2) array.set(rfilt, 1, array.get(rfilt, 0)) if type=="Type 1" if h - r > array.get(rfilt, 1) array.set(rfilt, 0, h - r) if l + r < array.get(rfilt, 1) array.set(rfilt, 0, l + r) if type=="Type 2" if h >= array.get(rfilt, 1) + r array.set(rfilt, 0, array.get(rfilt, 1) + floor(abs(h - array.get(rfilt, 1))/r)*r) if l <= array.get(rfilt, 1) - r array.set(rfilt, 0, array.get(rfilt, 1) - floor(abs(l - array.get(rfilt, 1))/r)*r) rng_filt1 = array.get(rfilt, 0) hi_band1 = rng_filt1 + r lo_band1 = rng_filt1 - r rng_filt2 = Cond_EMA(rng_filt1, rng_filt1 != rng_filt1[1], av_n) hi_band2 = Cond_EMA(hi_band1, rng_filt1 != rng_filt1[1], av_n) lo_band2 = Cond_EMA(lo_band1, rng_filt1 != rng_filt1[1], av_n) rng_filt = av_rf ? rng_filt2 : rng_filt1 hi_band = av_rf ? hi_band2 : hi_band1 lo_band = av_rf ? lo_band2 : lo_band1 [hi_band, lo_band, rng_filt] //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Inputs //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Filter Type f_type = input(defval="Type 1", options=["Type 1", "Type 2"], title="Filter Type") //Movement Source mov_src = input(defval="Close", options=["Wicks", "Close"], title="Movement Source") //Range Size Inputs rng_qty = input(defval=2.618, minval=0.0000001, title="Range Size") rng_scale = input(defval="Average Change", options=["Points", "Pips", "Ticks", "% of Price", "ATR", "Average Change", "Standard Deviation", "Absolute"], title="Range Scale") //Range Period rng_per = input(defval=14, minval=1, title="Range Period (for ATR, Average Change, and Standard Deviation)") //Range Smoothing Inputs smooth_range = input(defval=true, title="Smooth Range") smooth_per = input(defval=27, minval=1, title="Smoothing Period") //Filter Value Averaging Inputs av_vals = input(defval=true, title="Average Filter Changes") av_samples = input(defval=2, minval=1, title="Number Of Changes To Average") //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Definitions //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //High And Low Values h_val = mov_src=="Wicks" ? high : close l_val = mov_src=="Wicks" ? low : close //Range Filter Values [h_band, l_band, filt] = rng_filt(h_val, l_val, rng_size((h_val + l_val)/2, rng_scale, rng_qty, rng_per), rng_per, f_type, smooth_range, smooth_per, av_vals, av_samples) //Direction Conditions var fdir = 0.0 fdir := filt > filt[1] ? 1 : filt < filt[1] ? -1 : fdir upward = fdir==1 ? 1 : 0 downward = fdir==-1 ? 1 : 0 //Colors filt_color = upward ? #05ff9b : downward ? #ff0583 : #cccccc bar_color = upward and (close > filt) ? (close > close[1] ? #05ff9b : #00b36b) : downward and (close < filt) ? (close < close[1] ? #ff0583 : #b8005d) : #cccccc //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Outputs //----------------------------------------------------------------------------------------------------------------------------------------------------------------- //Filter Plot filt_plot = plot(filt, color=filt_color, transp=0, linewidth=3, title="Filter") //Band Plots h_band_plot = plot(h_band, color=#05ff9b, transp=100, title="High Band") l_band_plot = plot(l_band, color=#ff0583, transp=100, title="Low Band") //Band Fills fill(h_band_plot, filt_plot, color=#00b36b, transp=85, title="High Band Fill") fill(l_band_plot, filt_plot, color=#b8005d, transp=85, title="Low Band Fill") //Bar Color barcolor(bar_color) //External Trend Output plot(fdir, transp=100, editable=false, display=display.none, title="External Output - Trend Signal") // Trading Conditions Logic longCond = close > filt and close > close[1] and upward > 0 or close > filt and close < close[1] and upward > 0 shortCond = close < filt and close < close[1] and downward > 0 or close < filt and close > close[1] and downward > 0 CondIni = 0 CondIni := longCond ? 1 : shortCond ? -1 : CondIni[1] longCondition = longCond and CondIni[1] == -1 shortCondition = shortCond and CondIni[1] == 1 // Strategy Entry and Exit strategy.entry("Buy", strategy.long, when = longCondition) strategy.entry("Sell", strategy.short, when = shortCondition) strategy.close("Buy", when = shortCondition) strategy.close("Sell", when = longCondition) // Plot Buy and Sell Labels plotshape(longCondition, title = "Buy Signal", text ="BUY", textcolor = color.white, style=shape.labelup, size = size.normal, location=location.belowbar, color = color.green, transp = 0) plotshape(shortCondition, title = "Sell Signal", text ="SELL", textcolor = color.white, style=shape.labeldown, size = size.normal, location=location.abovebar, color = color.red, transp = 0) // Alerts alertcondition(longCondition, title="Buy Alert", message = "BUY") alertcondition(shortCondition, title="Sell Alert", message = "SELL")template: strategy.tpl:40:21: executing "strategy.tpl" at <.api.GetStrategyListByName>: wrong number of args for GetStrategyListByName: want 7 got 6