
La estrategia combina varias medias móviles diferentes para lograr una estrategia de seguimiento de tendencias sencilla que al mismo tiempo tiene la función de filtrar el ruido.
La estrategia primero hace un suavizado en el precio de cierre, donde se puede elegir si se usa el precio de cierre de Heiken Ashi. Luego se llama a la función smoothMA, que permite una superposición múltiple de los medios móviles suavizados. La función smoothMA llama primero a la función variante, que puede generar varios tipos diferentes de medios móviles, como SMA, EMA, DEMA, etc.
Se puede considerar el uso de otros indicadores como MACD, KDJ, etc., para identificar señales de tendencia con mayor precisión. Optimice los parámetros de las medias móviles, reduzca el retraso.
La estrategia permite el seguimiento de la tendencia mediante la superposición de múltiples medias móviles, lo que elimina eficazmente el ruido del mercado. La ventaja es que es simple y fácil de usar, y se pueden ajustar los parámetros con flexibilidad. Sin embargo, el uso de un sistema de medias móviles solo sigue siendo un problema de rentabilidad limitada. Se puede considerar su uso en combinación con otros indicadores técnicos, al tiempo que se presta atención a controlar el riesgo de negociación, optimizar los parámetros y mejorar la eficiencia de la estrategia.
/*backtest
start: 2022-10-30 00:00:00
end: 2023-11-05 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=4
// Copyright (c) 2007-present Jurik Research and Consulting. All rights reserved.
// Copyright (c) 2018-present, Alex Orekhov (everget)
// Thanks to everget for code for more advanced moving averages
// Smooth Moving Average [STRATEGY] @PuppyTherapy script may be freely distributed under the MIT license.
strategy( title="Smooth Moving Average [STRATEGY] @PuppyTherapy", overlay=true )
// ---- CONSTANTS ----
lsmaOffset = 1
almaOffset = 0.85
almaSigma = 6
phase = 2
power = 2
// ---- GLOBAL FUNCTIONS ----
kama(src, len)=>
xvnoise = abs(src - src[1])
nfastend = 0.666
nslowend = 0.0645
nsignal = abs(src - src[len])
nnoise = sum(xvnoise, len)
nefratio = iff(nnoise != 0, nsignal / nnoise, 0)
nsmooth = pow(nefratio * (nfastend - nslowend) + nslowend, 2)
nAMA = 0.0
nAMA := nz(nAMA[1]) + nsmooth * (src - nz(nAMA[1]))
t3(src, len)=>
xe1_1 = ema(src, len)
xe2_1 = ema(xe1_1, len)
xe3_1 = ema(xe2_1, len)
xe4_1 = ema(xe3_1, len)
xe5_1 = ema(xe4_1, len)
xe6_1 = ema(xe5_1, len)
b_1 = 0.7
c1_1 = -b_1*b_1*b_1
c2_1 = 3*b_1*b_1+3*b_1*b_1*b_1
c3_1 = -6*b_1*b_1-3*b_1-3*b_1*b_1*b_1
c4_1 = 1+3*b_1+b_1*b_1*b_1+3*b_1*b_1
nT3Average_1 = c1_1 * xe6_1 + c2_1 * xe5_1 + c3_1 * xe4_1 + c4_1 * xe3_1
// The general form of the weights of the (2m + 1)-term Henderson Weighted Moving Average
getWeight(m, j) =>
numerator = 315 * (pow(m + 1, 2) - pow(j, 2)) * (pow(m + 2, 2) - pow(j, 2)) * (pow(m + 3, 2) - pow(j, 2)) * (3 * pow(m + 2, 2) - 11 * pow(j, 2) - 16)
denominator = 8 * (m + 2) * (pow(m + 2, 2) - 1) * (4 * pow(m + 2, 2) - 1) * (4 * pow(m + 2, 2) - 9) * (4 * pow(m + 2, 2) - 25)
denominator != 0
? numerator / denominator
: 0
hwma(src, termsNumber) =>
sum = 0.0
weightSum = 0.0
termMult = (termsNumber - 1) / 2
for i = 0 to termsNumber - 1
weight = getWeight(termMult, i - termMult)
sum := sum + nz(src[i]) * weight
weightSum := weightSum + weight
sum / weightSum
get_jurik(length, phase, power, src)=>
phaseRatio = phase < -100 ? 0.5 : phase > 100 ? 2.5 : phase / 100 + 1.5
beta = 0.45 * (length - 1) / (0.45 * (length - 1) + 2)
alpha = pow(beta, power)
jma = 0.0
e0 = 0.0
e0 := (1 - alpha) * src + alpha * nz(e0[1])
e1 = 0.0
e1 := (src - e0) * (1 - beta) + beta * nz(e1[1])
e2 = 0.0
e2 := (e0 + phaseRatio * e1 - nz(jma[1])) * pow(1 - alpha, 2) + pow(alpha, 2) * nz(e2[1])
jma := e2 + nz(jma[1])
variant(src, type, len ) =>
v1 = sma(src, len) // Simple
v2 = ema(src, len) // Exponential
v3 = 2 * v2 - ema(v2, len) // Double Exponential
v4 = 3 * (v2 - ema(v2, len)) + ema(ema(v2, len), len) // Triple Exponential
v5 = wma(src, len) // Weighted
v6 = vwma(src, len) // Volume Weighted
v7 = na(v5[1]) ? sma(src, len) : (v5[1] * (len - 1) + src) / len // Smoothed
v8 = wma(2 * wma(src, len / 2) - wma(src, len), round(sqrt(len))) // Hull
v9 = linreg(src, len, lsmaOffset) // Least Squares
v10 = alma(src, len, almaOffset, almaSigma) // Arnaud Legoux
v11 = kama(src, len) // KAMA
ema1 = ema(src, len)
ema2 = ema(ema1, len)
v13 = t3(src, len) // T3
v14 = ema1+(ema1-ema2) // Zero Lag Exponential
v15 = hwma(src, len) // Henderson Moving average thanks to @everget
ahma = 0.0
ahma := nz(ahma[1]) + (src - (nz(ahma[1]) + nz(ahma[len])) / 2) / len //Ahrens Moving Average
v16 = ahma
v17 = get_jurik( len, phase, power, src)
type=="EMA"?v2 : type=="DEMA"?v3 : type=="TEMA"?v4 : type=="WMA"?v5 : type=="VWMA"?v6 :
type=="SMMA"?v7 : type=="Hull"?v8 : type=="LSMA"?v9 : type=="ALMA"?v10 : type=="KAMA"?v11 :
type=="T3"?v13 : type=="ZEMA"?v14 : type=="HWMA"?v15 : type=="AHMA"?v16 : type=="JURIK"?v17 : v1
smoothMA(c, maLoop, type, len) =>
ma_c = 0.0
if maLoop == 1
ma_c := variant(c, type, len)
if maLoop == 2
ma_c := variant(variant(c ,type, len),type, len)
if maLoop == 3
ma_c := variant(variant(variant(c ,type, len),type, len),type, len)
if maLoop == 4
ma_c := variant(variant(variant(variant(c ,type, len),type, len),type, len),type, len)
if maLoop == 5
ma_c := variant(variant(variant(variant(variant(c ,type, len),type, len),type, len),type, len),type, len)
ma_c
// Smoothing HA Function
smoothHA( o, h, l, c ) =>
hao = 0.0
hac = ( o + h + l + c ) / 4
hao := na(hao[1])?(o + c / 2 ):(hao[1] + hac[1])/2
hah = max(h, max(hao, hac))
hal = min(l, min(hao, hac))
[hao, hah, hal, hac]
// ---- Main Selection ----
haSmooth = input(false, title=" Use HA as source ? " )
length = input(60, title=" MA1 Length", minval=1, maxval=1000)
maLoop = input(2, title=" Nr. of MA1 Smoothings ", minval=1, maxval=5)
type = input("EMA", title="MA Type", options=["SMA", "EMA", "DEMA", "TEMA", "WMA", "VWMA", "SMMA", "Hull", "LSMA", "ALMA", "KAMA", "ZEMA", "HWMA", "AHMA", "JURIK", "T3"])
// ---- BODY SCRIPT ----
[ ha_open, ha_high, ha_low, ha_close ] = smoothHA(open, high, low, close)
_close_ma = haSmooth ? ha_close : close
_close_smoothed_ma = smoothMA( _close_ma, maLoop, type, length)
maColor = _close_smoothed_ma > _close_smoothed_ma[1] ? color.lime : color.red
plot(_close_smoothed_ma, title= "MA - Trend", color=maColor, transp=85, linewidth = 4)
long = _close_smoothed_ma > _close_smoothed_ma[1] and _close_smoothed_ma[1] < _close_smoothed_ma[2]
short = _close_smoothed_ma < _close_smoothed_ma[1] and _close_smoothed_ma[1] > _close_smoothed_ma[2]
plotshape( short , title="Short", color=color.red, transp=80, style=shape.triangledown, location=location.abovebar, size=size.small)
plotshape( long , title="Long", color=color.lime, transp=80, style=shape.triangleup, location=location.belowbar, size=size.small)
//* Backtesting Period Selector | Component *//
//* Source: https://www.tradingview.com/script/eCC1cvxQ-Backtesting-Period-Selector-Component *//
testStartYear = input(2018, "Backtest Start Year",minval=1980)
testStartMonth = input(1, "Backtest Start Month",minval=1,maxval=12)
testStartDay = input(1, "Backtest Start Day",minval=1,maxval=31)
testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,0,0)
testStopYear = 9999 //input(9999, "Backtest Stop Year",minval=1980)
testStopMonth = 12 // input(12, "Backtest Stop Month",minval=1,maxval=12)
testStopDay = 31 //input(31, "Backtest Stop Day",minval=1,maxval=31)
testPeriodStop = timestamp(testStopYear,testStopMonth,testStopDay,0,0)
testPeriod() => time >= testPeriodStart and time <= testPeriodStop ? true : false
if testPeriod() and long
strategy.entry( "long", strategy.long )
if testPeriod() and short
strategy.entry( "short", strategy.short )