
यह रणनीति एक सरल ट्रेंड ट्रैकिंग रणनीति बनाने के लिए कई अलग-अलग चलती औसत को जोड़ती है।
यह रणनीति पहले समापन मूल्य को चिकना करती है, और यह चुनने के लिए कि क्या यह Heiken Ashi समापन मूल्य का उपयोग करना है। इसके बाद, एक चिकनी एमए फ़ंक्शन को बुलाया जाता है, जो कई बार एक चिकनी चलती औसत को ओवरले करता है। एक चिकनी एमए फ़ंक्शन पहले एक वैरिएंट फ़ंक्शन को बुलाता है, जो कई अलग-अलग प्रकार के चलती औसत उत्पन्न कर सकता है, जैसे कि एसएमए, ईएमए, डीईएमए आदि। एक वैरिएंट फ़ंक्शन एक निर्दिष्ट प्रकार और लंबाई की चलती औसत उत्पन्न करने के बाद, एक चिकनी एमए को एक आवर्ती तरीके से कई बार ओवरले किया जाता है, जिससे कई गुना चिकनी होती है।
अन्य संकेतकों जैसे कि MACD, KDJ आदि के साथ संयोजन पर विचार किया जा सकता है, जिससे ट्रेंड सिग्नल की पहचान अधिक सटीक हो सके। चलती औसत मापदंडों का अनुकूलन करें, विलंबता को कम करें। उचित स्टॉप लॉस स्तर सेट करें, एकल हानि को नियंत्रित करें। ट्रेडिंग आवृत्ति को नियंत्रित करने और ट्रेडिंग लागत को कम करने पर ध्यान दें।
इस रणनीति को कई ओवरले चलती औसत के माध्यम से ट्रेंड ट्रैकिंग को प्राप्त करने के लिए, बाजार के शोर को प्रभावी ढंग से खत्म कर सकते हैं। इसका लाभ सरल और आसान है, लेकिन केवल एक चलती औसत प्रणाली का उपयोग करने के लिए लाभप्रदता की सीमाएं हैं। व्यापार जोखिम को नियंत्रित करने, पैरामीटर को अनुकूलित करने और रणनीति की दक्षता में सुधार करने के लिए अन्य तकनीकी संकेतकों के संयोजन के साथ उपयोग करने पर विचार किया जा सकता है।
/*backtest
start: 2022-10-30 00:00:00
end: 2023-11-05 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
//@version=4
// Copyright (c) 2007-present Jurik Research and Consulting. All rights reserved.
// Copyright (c) 2018-present, Alex Orekhov (everget)
// Thanks to everget for code for more advanced moving averages
// Smooth Moving Average [STRATEGY] @PuppyTherapy script may be freely distributed under the MIT license.
strategy( title="Smooth Moving Average [STRATEGY] @PuppyTherapy", overlay=true )
// ---- CONSTANTS ----
lsmaOffset = 1
almaOffset = 0.85
almaSigma = 6
phase = 2
power = 2
// ---- GLOBAL FUNCTIONS ----
kama(src, len)=>
xvnoise = abs(src - src[1])
nfastend = 0.666
nslowend = 0.0645
nsignal = abs(src - src[len])
nnoise = sum(xvnoise, len)
nefratio = iff(nnoise != 0, nsignal / nnoise, 0)
nsmooth = pow(nefratio * (nfastend - nslowend) + nslowend, 2)
nAMA = 0.0
nAMA := nz(nAMA[1]) + nsmooth * (src - nz(nAMA[1]))
t3(src, len)=>
xe1_1 = ema(src, len)
xe2_1 = ema(xe1_1, len)
xe3_1 = ema(xe2_1, len)
xe4_1 = ema(xe3_1, len)
xe5_1 = ema(xe4_1, len)
xe6_1 = ema(xe5_1, len)
b_1 = 0.7
c1_1 = -b_1*b_1*b_1
c2_1 = 3*b_1*b_1+3*b_1*b_1*b_1
c3_1 = -6*b_1*b_1-3*b_1-3*b_1*b_1*b_1
c4_1 = 1+3*b_1+b_1*b_1*b_1+3*b_1*b_1
nT3Average_1 = c1_1 * xe6_1 + c2_1 * xe5_1 + c3_1 * xe4_1 + c4_1 * xe3_1
// The general form of the weights of the (2m + 1)-term Henderson Weighted Moving Average
getWeight(m, j) =>
numerator = 315 * (pow(m + 1, 2) - pow(j, 2)) * (pow(m + 2, 2) - pow(j, 2)) * (pow(m + 3, 2) - pow(j, 2)) * (3 * pow(m + 2, 2) - 11 * pow(j, 2) - 16)
denominator = 8 * (m + 2) * (pow(m + 2, 2) - 1) * (4 * pow(m + 2, 2) - 1) * (4 * pow(m + 2, 2) - 9) * (4 * pow(m + 2, 2) - 25)
denominator != 0
? numerator / denominator
: 0
hwma(src, termsNumber) =>
sum = 0.0
weightSum = 0.0
termMult = (termsNumber - 1) / 2
for i = 0 to termsNumber - 1
weight = getWeight(termMult, i - termMult)
sum := sum + nz(src[i]) * weight
weightSum := weightSum + weight
sum / weightSum
get_jurik(length, phase, power, src)=>
phaseRatio = phase < -100 ? 0.5 : phase > 100 ? 2.5 : phase / 100 + 1.5
beta = 0.45 * (length - 1) / (0.45 * (length - 1) + 2)
alpha = pow(beta, power)
jma = 0.0
e0 = 0.0
e0 := (1 - alpha) * src + alpha * nz(e0[1])
e1 = 0.0
e1 := (src - e0) * (1 - beta) + beta * nz(e1[1])
e2 = 0.0
e2 := (e0 + phaseRatio * e1 - nz(jma[1])) * pow(1 - alpha, 2) + pow(alpha, 2) * nz(e2[1])
jma := e2 + nz(jma[1])
variant(src, type, len ) =>
v1 = sma(src, len) // Simple
v2 = ema(src, len) // Exponential
v3 = 2 * v2 - ema(v2, len) // Double Exponential
v4 = 3 * (v2 - ema(v2, len)) + ema(ema(v2, len), len) // Triple Exponential
v5 = wma(src, len) // Weighted
v6 = vwma(src, len) // Volume Weighted
v7 = na(v5[1]) ? sma(src, len) : (v5[1] * (len - 1) + src) / len // Smoothed
v8 = wma(2 * wma(src, len / 2) - wma(src, len), round(sqrt(len))) // Hull
v9 = linreg(src, len, lsmaOffset) // Least Squares
v10 = alma(src, len, almaOffset, almaSigma) // Arnaud Legoux
v11 = kama(src, len) // KAMA
ema1 = ema(src, len)
ema2 = ema(ema1, len)
v13 = t3(src, len) // T3
v14 = ema1+(ema1-ema2) // Zero Lag Exponential
v15 = hwma(src, len) // Henderson Moving average thanks to @everget
ahma = 0.0
ahma := nz(ahma[1]) + (src - (nz(ahma[1]) + nz(ahma[len])) / 2) / len //Ahrens Moving Average
v16 = ahma
v17 = get_jurik( len, phase, power, src)
type=="EMA"?v2 : type=="DEMA"?v3 : type=="TEMA"?v4 : type=="WMA"?v5 : type=="VWMA"?v6 :
type=="SMMA"?v7 : type=="Hull"?v8 : type=="LSMA"?v9 : type=="ALMA"?v10 : type=="KAMA"?v11 :
type=="T3"?v13 : type=="ZEMA"?v14 : type=="HWMA"?v15 : type=="AHMA"?v16 : type=="JURIK"?v17 : v1
smoothMA(c, maLoop, type, len) =>
ma_c = 0.0
if maLoop == 1
ma_c := variant(c, type, len)
if maLoop == 2
ma_c := variant(variant(c ,type, len),type, len)
if maLoop == 3
ma_c := variant(variant(variant(c ,type, len),type, len),type, len)
if maLoop == 4
ma_c := variant(variant(variant(variant(c ,type, len),type, len),type, len),type, len)
if maLoop == 5
ma_c := variant(variant(variant(variant(variant(c ,type, len),type, len),type, len),type, len),type, len)
ma_c
// Smoothing HA Function
smoothHA( o, h, l, c ) =>
hao = 0.0
hac = ( o + h + l + c ) / 4
hao := na(hao[1])?(o + c / 2 ):(hao[1] + hac[1])/2
hah = max(h, max(hao, hac))
hal = min(l, min(hao, hac))
[hao, hah, hal, hac]
// ---- Main Selection ----
haSmooth = input(false, title=" Use HA as source ? " )
length = input(60, title=" MA1 Length", minval=1, maxval=1000)
maLoop = input(2, title=" Nr. of MA1 Smoothings ", minval=1, maxval=5)
type = input("EMA", title="MA Type", options=["SMA", "EMA", "DEMA", "TEMA", "WMA", "VWMA", "SMMA", "Hull", "LSMA", "ALMA", "KAMA", "ZEMA", "HWMA", "AHMA", "JURIK", "T3"])
// ---- BODY SCRIPT ----
[ ha_open, ha_high, ha_low, ha_close ] = smoothHA(open, high, low, close)
_close_ma = haSmooth ? ha_close : close
_close_smoothed_ma = smoothMA( _close_ma, maLoop, type, length)
maColor = _close_smoothed_ma > _close_smoothed_ma[1] ? color.lime : color.red
plot(_close_smoothed_ma, title= "MA - Trend", color=maColor, transp=85, linewidth = 4)
long = _close_smoothed_ma > _close_smoothed_ma[1] and _close_smoothed_ma[1] < _close_smoothed_ma[2]
short = _close_smoothed_ma < _close_smoothed_ma[1] and _close_smoothed_ma[1] > _close_smoothed_ma[2]
plotshape( short , title="Short", color=color.red, transp=80, style=shape.triangledown, location=location.abovebar, size=size.small)
plotshape( long , title="Long", color=color.lime, transp=80, style=shape.triangleup, location=location.belowbar, size=size.small)
//* Backtesting Period Selector | Component *//
//* Source: https://www.tradingview.com/script/eCC1cvxQ-Backtesting-Period-Selector-Component *//
testStartYear = input(2018, "Backtest Start Year",minval=1980)
testStartMonth = input(1, "Backtest Start Month",minval=1,maxval=12)
testStartDay = input(1, "Backtest Start Day",minval=1,maxval=31)
testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,0,0)
testStopYear = 9999 //input(9999, "Backtest Stop Year",minval=1980)
testStopMonth = 12 // input(12, "Backtest Stop Month",minval=1,maxval=12)
testStopDay = 31 //input(31, "Backtest Stop Day",minval=1,maxval=31)
testPeriodStop = timestamp(testStopYear,testStopMonth,testStopDay,0,0)
testPeriod() => time >= testPeriodStart and time <= testPeriodStop ? true : false
if testPeriod() and long
strategy.entry( "long", strategy.long )
if testPeriod() and short
strategy.entry( "short", strategy.short )