Strategi perdagangan kuantitatif yang menggabungkan rata-rata pergerakan multi-kerangka waktu dan waktu perdagangan


Tanggal Pembuatan: 2024-01-12 11:50:37 Akhirnya memodifikasi: 2024-01-12 11:50:37
menyalin: 1 Jumlah klik: 599
1
fokus pada
1617
Pengikut

Strategi perdagangan kuantitatif yang menggabungkan rata-rata pergerakan multi-kerangka waktu dan waktu perdagangan

Ringkasan

Strategi ini menggunakan berbagai indikator moving average, yang dikombinasikan dengan waktu perdagangan untuk memilih waktu masuk dan keluar, untuk mencapai perdagangan kuantitatif.

Prinsip Strategi

Strategi ini menggunakan 9 jenis rata-rata bergerak termasuk SMA, EMA, WMA, dan lain-lain. Sesuai dengan pilihan pengguna, ketika memasuki beberapa posisi, penutupan di atas rata-rata bergerak yang dipilih dan harga penutupan K-line sebelumnya di bawah rata-rata bergerak; ketika kosong, penutupan di bawah harga penutupan rata-rata bergerak yang dipilih dan harga penutupan K-line sebelumnya di atas rata-rata bergerak.

Analisis Keunggulan

Ada banyak jenis rata-rata bergerak dalam satu set strategi ini, dan pengguna dapat memilih parameter yang berbeda untuk menyesuaikan diri dengan lingkungan pasar yang berbeda.‘% transaksi yang gagal’Pada saat yang sama, strategi ini hanya membuka posisi pada hari Senin dan menghentikan atau menutup posisi pada hari Minggu, membatasi jumlah maksimum posisi yang dibuka dalam satu minggu, secara efektif mengendalikan risiko perdagangan.

Analisis risiko

Strategi ini terutama bergantung pada indikator rata-rata untuk menilai tren, dan ada risiko bahwa sebagian perdagangan akan terjebak ketika tren berbalik. Selain itu, hanya dapat membuka posisi pada hari Senin, dan tidak dapat masuk jika ada peluang perdagangan yang lebih baik setelah hari Senin, dan mungkin kehilangan sebagian keuntungan.

Untuk mengontrol risiko ini, disarankan untuk menggunakan parameter moving average yang dinamis, parameter yang tepat untuk mempersingkat ketika pasar memasuki gejolak; juga, dapat meningkatkan waktu pembukaan posisi, dan masih diizinkan untuk membuka posisi baru pada hari Rabu atau Kamis.

Arah optimasi

Strategi ini dapat dioptimalkan dalam beberapa hal:

  1. Menambahkan algoritma Algerism stop loss, dan secara dinamis menyesuaikan titik stop loss;

  2. Menambahkan model pembelajaran mesin untuk menilai tren dan menghindari masuk ke pasar yang bergolak;

  3. Mengoptimalkan logika open and close, memungkinkan lebih banyak peluang open.

Meringkaskan

Strategi ini mengintegrasikan berbagai indikator rata-rata bergerak untuk menentukan arah tren, dengan cara membuka posisi pada hari Senin dan posisi kosong pada hari Minggu, strategi ini secara efektif mengontrol jumlah maksimum perdagangan dalam satu minggu. Pada saat yang sama, aturan stop-loss yang ketat juga membatasi kerugian maksimum dalam satu perdagangan. Secara keseluruhan, strategi ini dirancang untuk mengoptimalkan dua dimensi penilaian tren dan pengendalian risiko, dan merupakan strategi perdagangan kuantitatif yang lebih kuat.

Kode Sumber Strategi
/*backtest
start: 2023-12-01 00:00:00
end: 2023-12-31 23:59:59
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © exlux99

//@version=5
strategy('Time MA strategy ', overlay=true)

longEntry = input.bool(true, group="Type of Entries")
shortEntry = input.bool(false, group="Type of Entries")


//==========DEMA
getDEMA(src, len) =>
    dema = 2 * ta.ema(src, len) - ta.ema(ta.ema(src, len), len)
    dema
//==========HMA
getHULLMA(src, len) =>
    hullma = ta.wma(2 * ta.wma(src, len / 2) - ta.wma(src, len), math.round(math.sqrt(len)))
    hullma
//==========KAMA
getKAMA(src, len, k1, k2) =>
    change = math.abs(ta.change(src, len))
    volatility = math.sum(math.abs(ta.change(src)), len)
    efficiency_ratio = volatility != 0 ? change / volatility : 0
    kama = 0.0
    fast = 2 / (k1 + 1)
    slow = 2 / (k2 + 1)
    smooth_const = math.pow(efficiency_ratio * (fast - slow) + slow, 2)
    kama := nz(kama[1]) + smooth_const * (src - nz(kama[1]))
    kama
//==========TEMA
getTEMA(src, len) =>
    e = ta.ema(src, len)
    tema = 3 * (e - ta.ema(e, len)) + ta.ema(ta.ema(e, len), len)
    tema
//==========ZLEMA
getZLEMA(src, len) =>
    zlemalag_1 = (len - 1) / 2
    zlemadata_1 = src + src - src[zlemalag_1]
    zlema = ta.ema(zlemadata_1, len)
    zlema
//==========FRAMA
getFRAMA(src, len) =>
    Price = src
    N = len
    if N % 2 != 0
        N := N + 1
        N
    N1 = 0.0
    N2 = 0.0
    N3 = 0.0
    HH = 0.0
    LL = 0.0
    Dimen = 0.0
    alpha = 0.0
    Filt = 0.0
    N3 := (ta.highest(N) - ta.lowest(N)) / N
    HH := ta.highest(N / 2 - 1)
    LL := ta.lowest(N / 2 - 1)
    N1 := (HH - LL) / (N / 2)
    HH := high[N / 2]
    LL := low[N / 2]
    for i = N / 2 to N - 1 by 1
        if high[i] > HH
            HH := high[i]
            HH
        if low[i] < LL
            LL := low[i]
            LL
    N2 := (HH - LL) / (N / 2)
    if N1 > 0 and N2 > 0 and N3 > 0
        Dimen := (math.log(N1 + N2) - math.log(N3)) / math.log(2)
        Dimen
    alpha := math.exp(-4.6 * (Dimen - 1))
    if alpha < .01
        alpha := .01
        alpha
    if alpha > 1
        alpha := 1
        alpha
    Filt := alpha * Price + (1 - alpha) * nz(Filt[1], 1)
    if bar_index < N + 1
        Filt := Price
        Filt
    Filt
//==========VIDYA
getVIDYA(src, len) =>
    mom = ta.change(src)
    upSum = math.sum(math.max(mom, 0), len)
    downSum = math.sum(-math.min(mom, 0), len)
    out = (upSum - downSum) / (upSum + downSum)
    cmo = math.abs(out)
    alpha = 2 / (len + 1)
    vidya = 0.0
    vidya := src * alpha * cmo + nz(vidya[1]) * (1 - alpha * cmo)
    vidya
//==========JMA
getJMA(src, len, power, phase) =>
    phase_ratio = phase < -100 ? 0.5 : phase > 100 ? 2.5 : phase / 100 + 1.5
    beta = 0.45 * (len - 1) / (0.45 * (len - 1) + 2)
    alpha = math.pow(beta, power)
    MA1 = 0.0
    Det0 = 0.0
    MA2 = 0.0
    Det1 = 0.0
    JMA = 0.0
    MA1 := (1 - alpha) * src + alpha * nz(MA1[1])
    Det0 := (src - MA1) * (1 - beta) + beta * nz(Det0[1])
    MA2 := MA1 + phase_ratio * Det0
    Det1 := (MA2 - nz(JMA[1])) * math.pow(1 - alpha, 2) + math.pow(alpha, 2) * nz(Det1[1])
    JMA := nz(JMA[1]) + Det1
    JMA
//==========T3
getT3(src, len, vFactor) =>
    ema1 = ta.ema(src, len)
    ema2 = ta.ema(ema1, len)
    ema3 = ta.ema(ema2, len)
    ema4 = ta.ema(ema3, len)
    ema5 = ta.ema(ema4, len)
    ema6 = ta.ema(ema5, len)
    c1 = -1 * math.pow(vFactor, 3)
    c2 = 3 * math.pow(vFactor, 2) + 3 * math.pow(vFactor, 3)
    c3 = -6 * math.pow(vFactor, 2) - 3 * vFactor - 3 * math.pow(vFactor, 3)
    c4 = 1 + 3 * vFactor + math.pow(vFactor, 3) + 3 * math.pow(vFactor, 2)
    T3 = c1 * ema6 + c2 * ema5 + c3 * ema4 + c4 * ema3
    T3
//==========TRIMA
getTRIMA(src, len) =>
    N = len + 1
    Nm = math.round(N / 2)
    TRIMA = ta.sma(ta.sma(src, Nm), Nm)
    TRIMA


src = input.source(close, title='Source', group='Parameters')
len = input.int(17, minval=1, title='Moving Averages', group='Parameters')
out_ma_source = input.string(title='MA Type', defval='ALMA', options=['SMA', 'EMA', 'WMA', 'ALMA', 'SMMA', 'LSMA', 'VWMA', 'DEMA', 'HULL', 'KAMA', 'FRAMA', 'VIDYA', 'JMA', 'TEMA', 'ZLEMA', 'T3', 'TRIM'], group='Parameters')
out_ma = out_ma_source == 'SMA' ? ta.sma(src, len) : out_ma_source == 'EMA' ? ta.ema(src, len) : out_ma_source == 'WMA' ? ta.wma(src, len) : out_ma_source == 'ALMA' ? ta.alma(src, len, 0.85, 6) : out_ma_source == 'SMMA' ? ta.rma(src, len) : out_ma_source == 'LSMA' ? ta.linreg(src, len, 0) : out_ma_source == 'VWMA' ? ta.vwma(src, len) : out_ma_source == 'DEMA' ? getDEMA(src, len) : out_ma_source == 'HULL' ? ta.hma(src, len) : out_ma_source == 'KAMA' ? getKAMA(src, len, 2, 30) : out_ma_source == 'FRAMA' ? getFRAMA(src, len) : out_ma_source == 'VIDYA' ? getVIDYA(src, len) : out_ma_source == 'JMA' ? getJMA(src, len, 2, 50) : out_ma_source == 'TEMA' ? getTEMA(src, len) : out_ma_source == 'ZLEMA' ? getZLEMA(src, len) : out_ma_source == 'T3' ? getT3(src, len, 0.7) : out_ma_source == 'TRIM' ? getTRIMA(src, len) : na


plot(out_ma)

long = close> out_ma and close[1] < out_ma and dayofweek==dayofweek.monday
short = close< out_ma and close[1] > out_ma and dayofweek==dayofweek.monday


stopPer = input.float(10.0, title='LONG Stop Loss % ', group='Fixed Risk Management') / 100
takePer = input.float(30.0, title='LONG Take Profit %', group='Fixed Risk Management') / 100

stopPerShort = input.float(5.0, title='SHORT Stop Loss % ', group='Fixed Risk Management') / 100
takePerShort = input.float(10.0, title='SHORT Take Profit %', group='Fixed Risk Management') / 100


longStop = strategy.position_avg_price * (1 - stopPer)
longTake = strategy.position_avg_price * (1 + takePer)

shortStop = strategy.position_avg_price * (1 + stopPerShort)
shortTake = strategy.position_avg_price * (1 - takePerShort)

// strategy.risk.max_intraday_filled_orders(2) // After 10 orders are filled, no more strategy orders will be placed (except for a market order to exit current open market position, if there is any).

if(longEntry)
    strategy.entry("long",strategy.long,when=long )
    strategy.exit('LONG EXIT', "long", limit=longTake, stop=longStop)
    strategy.close("long",when=dayofweek==dayofweek.sunday)

if(shortEntry)
    strategy.entry("short",strategy.short,when=short )
    strategy.exit('SHORT EXIT', "short", limit=shortTake, stop=shortStop)
    strategy.close("short",when=dayofweek==dayofweek.sunday)