
ডায়নামিক আইডিওলজিকাল ট্রেন্ড রিভার্সন কৌশলটি প্রবণতা রিভার্সের জন্য মূল্যের পূর্বাভাস দেওয়ার জন্য এবং মুভিং এভারেজ গঠনের সাথে যুক্ত আইডিওলজিকাল ট্রেডিং সিগন্যাল তৈরির জন্য ব্যবহার করে। যখন পূর্বাভাস মূল্য নীচে থেকে উপরে চলে যায় তখন একটি কেনার সংকেত উত্পন্ন হয়; যখন পূর্বাভাস মূল্য নীচে থেকে নীচে চলে যায় তখন একটি বিক্রয় সংকেত উত্পন্ন হয়, যা প্রবণতা বিপরীতকরণকে ক্যাপচার করে।
উপরের সংকেতগুলি একাধিক নিশ্চিতকরণের সাথে মিলিত হয়, যা মিথ্যা ভাঙ্গন এড়াতে এবং সংকেতের নির্ভুলতা বাড়ায়।
ডায়নামিক আইডিওলজি ট্রেন্ড রিভার্সন কৌশলটি লিনিয়ার রিগ্রেশন পূর্বাভাস এবং চলমান গড় গঠনের সাথে সংযুক্ত একটি আইডিওলজি যা ট্রেন্ড রিভার্সের সময়কালকে ক্যাপচার করে। একক সূচকের তুলনায় এটির উচ্চতর নির্ভরযোগ্যতা রয়েছে। একই সাথে, কৌশলটি প্যারামিটার সমন্বয় এবং নিশ্চিতকরণ শর্তগুলির অপ্টিমাইজেশনের মাধ্যমে সংকেতের গুণমান এবং মুনাফা স্তরকে আরও উন্নত করতে পারে।
/*backtest
start: 2023-12-05 00:00:00
end: 2023-12-12 00:00:00
period: 1m
basePeriod: 1m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © stocktechbot
//@version=5
strategy("Linear Cross", overlay=true, margin_long=100, margin_short=0)
//Linear Regression
vol = volume
// Function to calculate linear regression
linregs(y, x, len) =>
ybar = math.sum(y, len)/len
xbar = math.sum(x, len)/len
b = math.sum((x - xbar)*(y - ybar),len)/math.sum((x - xbar)*(x - xbar),len)
a = ybar - b*xbar
[a, b]
// Historical stock price data
price = close
// Length of linear regression
len = input(defval = 21, title = 'Strategy Length')
linearlen=input(defval = 9, title = 'Linear Lookback')
[a, b] = linregs(price, vol, len)
// Calculate linear regression for stock price based on volume
//eps = request.earnings(syminfo.ticker, earnings.actual)
//MA For double confirmation
out = ta.sma(close, 200)
outf = ta.sma(close, 50)
outn = ta.sma(close, 90)
outt = ta.sma(close, 21)
outthree = ta.sma(close, 9)
// Predicted stock price based on volume
predicted_price = a + b*vol
// Check if predicted price is between open and close
is_between = open < predicted_price and predicted_price < close
//MACD
//[macdLine, signalLine, histLine] = ta.macd(close, 12, 26, 9)
// Plot predicted stock price
plot(predicted_price, color=color.rgb(65, 59, 150), linewidth=2, title="Predicted Price")
plot(ta.sma(predicted_price,linearlen), color=color.rgb(199, 43, 64), linewidth=2, title="MA Predicted Price")
//offset = input.int(title="Offset", defval=0, minval=-500, maxval=500)
plot(out, color=color.blue, title="MA200")
[macdLine, signalLine, histLine] = ta.macd(predicted_price, 12, 26, 9)
//BUY Signal
longCondition=false
mafentry =ta.sma(close, 50) > ta.sma(close, 90)
//matentry = ta.sma(close, 21) > ta.sma(close, 50)
matwohun = close > ta.sma(close, 200)
twohunraise = ta.rising(out, 2)
twentyrise = ta.rising(outt, 2)
macdrise = ta.rising(macdLine,2)
macdlong = ta.crossover(predicted_price, ta.wma(predicted_price,linearlen)) and (signalLine < macdLine)
if macdlong and macdrise
longCondition := true
if (longCondition)
strategy.entry("My Long Entry Id", strategy.long)
//Sell Signal
lastEntryPrice = strategy.opentrades.entry_price(strategy.opentrades - 1)
daysSinceEntry = len
daysSinceEntry := int((time - strategy.opentrades.entry_time(strategy.opentrades - 1)) / (24 * 60 * 60 * 1000))
percentageChange = (close - lastEntryPrice) / lastEntryPrice * 100
//trailChange = (ta.highest(close,daysSinceEntry) - close) / close * 100
//label.new(bar_index, high, color=color.black, textcolor=color.white,text=str.tostring(int(trailChange)))
shortCondition=false
mafexit =ta.sma(close, 50) < ta.sma(close, 90)
matexit = ta.sma(close, 21) < ta.sma(close, 50)
matwohund = close < ta.sma(close, 200)
twohunfall = ta.falling(out, 3)
twentyfall = ta.falling(outt, 2)
shortmafall = ta.falling(outthree, 1)
macdfall = ta.falling(macdLine,1)
macdsell = macdLine < signalLine
if macdfall and macdsell and (macdLine < signalLine) and ta.falling(low,2)
shortCondition := true
if (shortCondition)
strategy.entry("My Short Entry Id", strategy.short)