
La estrategia calcula el promedio de EMA de diferentes períodos para determinar en qué fase del ciclo se encuentra el mercado actual y, en combinación con el ATR, realiza un juicio de ruptura para lograr un seguimiento de tendencias de alta probabilidad.
Al juzgar la relación de magnitud entre las diferentes líneas medias de la EMA, se puede determinar con eficacia la fase del ciclo en la que se encuentra el mercado en la actualidad, evitando la generación de señales erróneas en períodos inadecuados.
El indicador ATR puede expresar eficazmente la volatilidad del mercado, estableciendo un ATR de un determinado múltiplo como estándar de ruptura, y puede filtrar muchas señales falsas de ruptura.
La combinación orgánica de la sentencia de ciclo y la sentencia de ruptura de ATR aumenta considerablemente la probabilidad de generar señales, lo que también aumenta la probabilidad de ganar en el comercio.
Debido a que la política contiene varios parámetros, es más difícil de optimizar, y la configuración incorrecta de los parámetros puede afectar el rendimiento de la política.
En un mercado que cambia rápidamente, tanto el EMA como el ATR están rezagados y pueden generar señales erróneas o oportunidades perdidas.
Es difícil para cualquier indicador técnico evitar completamente la generación de señales erróneas, por lo que es necesario establecer un estricto stop loss para controlar el riesgo.
Optimización de los parámetros a través de datos históricos más abundantes para encontrar la combinación óptima de parámetros.
Se puede considerar la posibilidad de ajustar automáticamente los parámetros de ATR en función de la volatilidad del mercado para mejorar la adaptabilidad de la estrategia.
Se puede intentar combinar otros indicadores, como la tasa de fluctuación y el tráfico, para ayudar a juzgar y mejorar la calidad de la señal.
La estrategia utiliza el ciclo de juicio de la media EMA y el indicador ATR para establecer estándares de ruptura de la dinámica y lograr un comercio de seguimiento de tendencias de alta probabilidad. Tiene ventajas como el ciclo de juicio, la filtración de señales falsas y la mejora de la calidad de la señal. Pero también existe la dificultad de optimizar los parámetros, el riesgo de que haya un retraso, y la necesidad de optimizar aún más los parámetros, aumentar la capacidad de adaptación y mejorar la estrategia.
/*backtest
start: 2024-01-15 00:00:00
end: 2024-01-22 00:00:00
period: 15m
basePeriod: 5m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © kgynofomo
//@version=5
strategy(title="[Salavi] | Andy Advance Pro Strategy",overlay = true)
ema_short = ta.ema(close,5)
ema_middle = ta.ema(close,20)
ema_long = ta.ema(close,40)
cycle_1 = ema_short>ema_middle and ema_middle>ema_long
cycle_2 = ema_middle>ema_short and ema_short>ema_long
cycle_3 = ema_middle>ema_long and ema_long>ema_short
cycle_4 = ema_long>ema_middle and ema_middle>ema_short
cycle_5 = ema_long>ema_short and ema_short>ema_middle
cycle_6 = ema_short>ema_long and ema_long>ema_middle
bull_cycle = cycle_1 or cycle_2 or cycle_3
bear_cycle = cycle_4 or cycle_5 or cycle_6
// label.new("cycle_1")
// bgcolor(color=cycle_1?color.rgb(82, 255, 148, 60):na)
// bgcolor(color=cycle_2?color.rgb(82, 255, 148, 70):na)
// bgcolor(color=cycle_3?color.rgb(82, 255, 148, 80):na)
// bgcolor(color=cycle_4?color.rgb(255, 82, 82, 80):na)
// bgcolor(color=cycle_5?color.rgb(255, 82, 82, 70):na)
// bgcolor(color=cycle_6?color.rgb(255, 82, 82, 60):na)
// Inputs
a = input(2, title='Key Vaule. \'This changes the sensitivity\'')
c = input(7, title='ATR Period')
h = false
xATR = ta.atr(c)
nLoss = a * xATR
src = h ? request.security(ticker.heikinashi(syminfo.tickerid), timeframe.period, close, lookahead=barmerge.lookahead_off) : close
xATRTrailingStop = 0.0
iff_1 = src > nz(xATRTrailingStop[1], 0) ? src - nLoss : src + nLoss
iff_2 = src < nz(xATRTrailingStop[1], 0) and src[1] < nz(xATRTrailingStop[1], 0) ? math.min(nz(xATRTrailingStop[1]), src + nLoss) : iff_1
xATRTrailingStop := src > nz(xATRTrailingStop[1], 0) and src[1] > nz(xATRTrailingStop[1], 0) ? math.max(nz(xATRTrailingStop[1]), src - nLoss) : iff_2
pos = 0
iff_3 = src[1] > nz(xATRTrailingStop[1], 0) and src < nz(xATRTrailingStop[1], 0) ? -1 : nz(pos[1], 0)
pos := src[1] < nz(xATRTrailingStop[1], 0) and src > nz(xATRTrailingStop[1], 0) ? 1 : iff_3
xcolor = pos == -1 ? color.red : pos == 1 ? color.green : color.blue
ema = ta.ema(src, 1)
above = ta.crossover(ema, xATRTrailingStop)
below = ta.crossover(xATRTrailingStop, ema)
buy = src > xATRTrailingStop and above
sell = src < xATRTrailingStop and below
barbuy = src > xATRTrailingStop
barsell = src < xATRTrailingStop
atr = ta.atr(14)
atr_length = input.int(25)
atr_rsi = ta.rsi(atr,atr_length)
atr_valid = atr_rsi>50
long_condition = buy and bull_cycle and atr_valid
short_condition = sell and bear_cycle and atr_valid
Exit_long_condition = short_condition
Exit_short_condition = long_condition
if long_condition
strategy.entry("Andy Buy",strategy.long, limit=close,comment="Andy Buy Here")
if Exit_long_condition
strategy.close("Andy Buy",comment="Andy Buy Out")
// strategy.entry("Andy fandan Short",strategy.short, limit=close,comment="Andy 翻單 short Here")
// strategy.close("Andy fandan Buy",comment="Andy short Out")
if short_condition
strategy.entry("Andy Short",strategy.short, limit=close,comment="Andy short Here")
// strategy.exit("STR","Long",stop=longstoploss)
if Exit_short_condition
strategy.close("Andy Short",comment="Andy short Out")
// strategy.entry("Andy fandan Buy",strategy.long, limit=close,comment="Andy 翻單 Buy Here")
// strategy.close("Andy fandan Short",comment="Andy Buy Out")
inLongTrade = strategy.position_size > 0
inLongTradecolor = #58D68D
notInTrade = strategy.position_size == 0
inShortTrade = strategy.position_size < 0
// bgcolor(color = inLongTrade?color.rgb(76, 175, 79, 70):inShortTrade?color.rgb(255, 82, 82, 70):na)
plotshape(close!=0,location = location.bottom,color = inLongTrade?color.rgb(76, 175, 79, 70):inShortTrade?color.rgb(255, 82, 82, 70):na)
plotshape(long_condition, title='Buy', text='Andy Buy', style=shape.labelup, location=location.belowbar, color=color.new(color.green, 0), textcolor=color.new(color.white, 0), size=size.tiny)
plotshape(short_condition, title='Sell', text='Andy Sell', style=shape.labeldown, location=location.abovebar, color=color.new(color.red, 0), textcolor=color.new(color.white, 0), size=size.tiny)
//atr > close *0.01* parameter