
동적 이데올로기 트렌드 반전 전략은 선형적 회귀를 이용한 가격 예측을 하고, 이동 평균이 형성되는 이데올로기와 결합하여 거래 신호를 생성한다. 예측된 가격이 아래에서 위로 이동 평균을 통과할 때 구매 신호를 생성한다. 예측된 가격이 위에서 아래로 이동 평균을 통과할 때 판매 신호를 생성하며, 트렌드 반전의 포착을 구현한다.
위의 신호는 여러 종류의 확인을 결합하여 가짜 돌파구를 방지하여 신호의 정확도를 향상시킵니다.
동적 이데올로기 트렌드 반전 전략은 선형 회귀 예측과 이동 평균 형성을 통합한 이데올로기로 트렌드 반전의 시기를 포착한다. 단일 지표에 비해 높은 신뢰성을 가지고 있다. 동시에, 전략은 파라미터 조정과 확인 조건을 최적화하여 신호 품질과 수익 수준을 더욱 향상시킬 수 있다.
/*backtest
start: 2023-12-05 00:00:00
end: 2023-12-12 00:00:00
period: 1m
basePeriod: 1m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © stocktechbot
//@version=5
strategy("Linear Cross", overlay=true, margin_long=100, margin_short=0)
//Linear Regression
vol = volume
// Function to calculate linear regression
linregs(y, x, len) =>
ybar = math.sum(y, len)/len
xbar = math.sum(x, len)/len
b = math.sum((x - xbar)*(y - ybar),len)/math.sum((x - xbar)*(x - xbar),len)
a = ybar - b*xbar
[a, b]
// Historical stock price data
price = close
// Length of linear regression
len = input(defval = 21, title = 'Strategy Length')
linearlen=input(defval = 9, title = 'Linear Lookback')
[a, b] = linregs(price, vol, len)
// Calculate linear regression for stock price based on volume
//eps = request.earnings(syminfo.ticker, earnings.actual)
//MA For double confirmation
out = ta.sma(close, 200)
outf = ta.sma(close, 50)
outn = ta.sma(close, 90)
outt = ta.sma(close, 21)
outthree = ta.sma(close, 9)
// Predicted stock price based on volume
predicted_price = a + b*vol
// Check if predicted price is between open and close
is_between = open < predicted_price and predicted_price < close
//MACD
//[macdLine, signalLine, histLine] = ta.macd(close, 12, 26, 9)
// Plot predicted stock price
plot(predicted_price, color=color.rgb(65, 59, 150), linewidth=2, title="Predicted Price")
plot(ta.sma(predicted_price,linearlen), color=color.rgb(199, 43, 64), linewidth=2, title="MA Predicted Price")
//offset = input.int(title="Offset", defval=0, minval=-500, maxval=500)
plot(out, color=color.blue, title="MA200")
[macdLine, signalLine, histLine] = ta.macd(predicted_price, 12, 26, 9)
//BUY Signal
longCondition=false
mafentry =ta.sma(close, 50) > ta.sma(close, 90)
//matentry = ta.sma(close, 21) > ta.sma(close, 50)
matwohun = close > ta.sma(close, 200)
twohunraise = ta.rising(out, 2)
twentyrise = ta.rising(outt, 2)
macdrise = ta.rising(macdLine,2)
macdlong = ta.crossover(predicted_price, ta.wma(predicted_price,linearlen)) and (signalLine < macdLine)
if macdlong and macdrise
longCondition := true
if (longCondition)
strategy.entry("My Long Entry Id", strategy.long)
//Sell Signal
lastEntryPrice = strategy.opentrades.entry_price(strategy.opentrades - 1)
daysSinceEntry = len
daysSinceEntry := int((time - strategy.opentrades.entry_time(strategy.opentrades - 1)) / (24 * 60 * 60 * 1000))
percentageChange = (close - lastEntryPrice) / lastEntryPrice * 100
//trailChange = (ta.highest(close,daysSinceEntry) - close) / close * 100
//label.new(bar_index, high, color=color.black, textcolor=color.white,text=str.tostring(int(trailChange)))
shortCondition=false
mafexit =ta.sma(close, 50) < ta.sma(close, 90)
matexit = ta.sma(close, 21) < ta.sma(close, 50)
matwohund = close < ta.sma(close, 200)
twohunfall = ta.falling(out, 3)
twentyfall = ta.falling(outt, 2)
shortmafall = ta.falling(outthree, 1)
macdfall = ta.falling(macdLine,1)
macdsell = macdLine < signalLine
if macdfall and macdsell and (macdLine < signalLine) and ta.falling(low,2)
shortCondition := true
if (shortCondition)
strategy.entry("My Short Entry Id", strategy.short)