Positive Channel EMA Trailing Stop Strategie


Erstellungsdatum: 2023-12-18 12:10:45 zuletzt geändert: 2023-12-18 12:10:45
Kopie: 0 Klicks: 670
1
konzentrieren Sie sich auf
1621
Anhänger

Positive Channel EMA Trailing Stop Strategie

Überblick

Die Strategie ist eine Kanal-Stopp-Strategie, die auf EMA-Indikatoren basiert. Sie kombiniert mehrere Mainstream-Technologie-Indikatoren wie Trendbeurteilung, Kanalverfolgung und dynamische Stopps. Durch die Beurteilung der EMA-Sortierungsbeziehungen werden die Bullen-Bären-Zyklen ermittelt, die Stopps werden in Kombination mit der ATR-Kanalverfolgung realisiert, so dass die Stopppunkte die Preise kontinuierlich verfolgen können.

Strategieprinzip

Die Strategie beurteilt den Zustand von Bulls und Bears hauptsächlich anhand von drei EMA-Kurven in verschiedenen Perioden. Die spezifischen Beurteilungsregeln sind:

  • EMA5> EMA20> EMA40 ist ein Bullen-Zyklus
  • EMA20> EMA5> EMA40 ist ein Bullen-Zyklus
  • EMA20> EMA40> EMA5 ist ein Bullen-Zyklus
  • EMA40> EMA20> EMA5 ist ein Bärenmarktzyklus
  • EMA40>EMA5>EMA20 ist ein Bärenmarktzyklus
  • EMA5>EMA40>EMA20 ist ein Bärenmarktzyklus

Nachdem die bullish-bearish-Periode ermittelt wurde, verwendet die Strategie die K-Linie-Preise der SMMA-Musterung in Kombination mit den Multiplikatoren des ATR-Indikators als Kanalbereich. Das Handelssignal wird nur ausgegeben, wenn der Preis den Kanal durchbricht.

Strategische Vorteile

Die wichtigsten Vorteile dieser Strategie sind:

  1. Die Verwendung von EMAs zur Bestimmung von bullish-bearish-Zyklen kann die Wendepunkte der Markttrends effektiv erfassen
  2. Eintrittspunkte auf Basis von ATR-Kanälen, um sich in der unruhigen Stadt zu schützen
  3. ATR-Dynamic Tracking Stop Loss, maximale Gewinnschließung und effektive Risikokontrolle

Risiko und Optimierung

Die Hauptrisiken dieser Strategie konzentrieren sich auf Probleme wie übermäßige Transaktionen, die durch falsche Parameter eingestellt werden können, und die Durchbrechung von Stop-Losses. Sie können in folgenden Bereichen optimiert werden:

  1. Optimierung der EMA-Zyklus-Parameterkombination auf der Suche nach der besten Parameterübereinstimmung
  2. Optimierung der Größe der ATR-Multiplikatoren, um zu verhindern, dass der Stop-Loss zu nah oder zu weit ist
  3. Das ist ein weiterer wichtiger Schritt, um die Auswirkungen der Erschütterung zu vermeiden.

Zusammenfassen

Diese Strategie integriert mehrere Mainstream-Technologie-Indikatoren und -Methoden wie Trendbeurteilung, Channel-Trading und Dynamische Stop-Loss, um ein vollständiges System von Stop-Loss-Trading-Strategien zu bilden. Es gibt noch viel Optimierungsmöglichkeiten in Bezug auf die Optimierung von Parametern und die Risikokontrolle.

Strategiequellcode
/*backtest
start: 2023-12-10 00:00:00
end: 2023-12-12 04:00:00
period: 1m
basePeriod: 1m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © kgynofomo

//@version=5
strategy(title="[Salavi] | Andy Advance Pro Strategy [ETH|M15]",overlay = true, pyramiding = 1,initial_capital = 10000, default_qty_type = strategy.cash,default_qty_value = 10000)

ema_short = ta.ema(close,5)
ema_middle = ta.ema(close,20)
ema_long = ta.ema(close,40)

cycle_1 = ema_short>ema_middle and ema_middle>ema_long
cycle_2 = ema_middle>ema_short and ema_short>ema_long
cycle_3 = ema_middle>ema_long and ema_long>ema_short
cycle_4 = ema_long>ema_middle and ema_middle>ema_short
cycle_5 = ema_long>ema_short and ema_short>ema_middle
cycle_6 = ema_short>ema_long and ema_long>ema_middle

bull_cycle = cycle_1 or cycle_2 or cycle_3
bear_cycle = cycle_4 or cycle_5 or cycle_6
// label.new("cycle_1")
// bgcolor(color=cycle_1?color.rgb(82, 255, 148, 60):na)
// bgcolor(color=cycle_2?color.rgb(82, 255, 148, 70):na)
// bgcolor(color=cycle_3?color.rgb(82, 255, 148, 80):na)
// bgcolor(color=cycle_4?color.rgb(255, 82, 82, 80):na)
// bgcolor(color=cycle_5?color.rgb(255, 82, 82, 70):na)
// bgcolor(color=cycle_6?color.rgb(255, 82, 82, 60):na)

// Inputs
a = input(2, title='Key Vaule. \'This changes the sensitivity\'')
c = input(7, title='ATR Period')
h = false

xATR = ta.atr(c)
nLoss = a * xATR

src = h ? request.security(ticker.heikinashi(syminfo.tickerid), timeframe.period, close, lookahead=barmerge.lookahead_off) : close

xATRTrailingStop = 0.0
iff_1 = src > nz(xATRTrailingStop[1], 0) ? src - nLoss : src + nLoss
iff_2 = src < nz(xATRTrailingStop[1], 0) and src[1] < nz(xATRTrailingStop[1], 0) ? math.min(nz(xATRTrailingStop[1]), src + nLoss) : iff_1
xATRTrailingStop := src > nz(xATRTrailingStop[1], 0) and src[1] > nz(xATRTrailingStop[1], 0) ? math.max(nz(xATRTrailingStop[1]), src - nLoss) : iff_2

pos = 0
iff_3 = src[1] > nz(xATRTrailingStop[1], 0) and src < nz(xATRTrailingStop[1], 0) ? -1 : nz(pos[1], 0)
pos := src[1] < nz(xATRTrailingStop[1], 0) and src > nz(xATRTrailingStop[1], 0) ? 1 : iff_3

xcolor = pos == -1 ? color.red : pos == 1 ? color.green : color.blue

ema = ta.ema(src, 1)
above = ta.crossover(ema, xATRTrailingStop)
below = ta.crossover(xATRTrailingStop, ema)

buy = src > xATRTrailingStop and above
sell = src < xATRTrailingStop and below

barbuy = src > xATRTrailingStop
barsell = src < xATRTrailingStop




atr = ta.atr(14)
atr_length = input.int(25)
atr_rsi = ta.rsi(atr,atr_length)
atr_valid = atr_rsi>50

long_condition =  buy and bull_cycle and atr_valid
short_condition =  sell and bear_cycle and atr_valid

Exit_long_condition = short_condition
Exit_short_condition = long_condition

if long_condition
    strategy.entry("Andy Buy",strategy.long, limit=close,comment="Andy Buy Here")

if Exit_long_condition
    strategy.close("Andy Buy",comment="Andy Buy Out")
    // strategy.entry("Andy fandan Short",strategy.short, limit=close,comment="Andy 翻單 short Here")
    // strategy.close("Andy fandan Buy",comment="Andy short Out")


if short_condition
    strategy.entry("Andy Short",strategy.short, limit=close,comment="Andy short Here")


// strategy.exit("STR","Long",stop=longstoploss)
if Exit_short_condition
    strategy.close("Andy Short",comment="Andy short Out")
    // strategy.entry("Andy fandan Buy",strategy.long, limit=close,comment="Andy 翻單 Buy Here")
    // strategy.close("Andy fandan Short",comment="Andy Buy Out")




inLongTrade = strategy.position_size > 0
inLongTradecolor = #58D68D
notInTrade = strategy.position_size == 0
inShortTrade = strategy.position_size < 0

// bgcolor(color = inLongTrade?color.rgb(76, 175, 79, 70):inShortTrade?color.rgb(255, 82, 82, 70):na)
plotshape(close!=0,location = location.bottom,color = inLongTrade?color.rgb(76, 175, 79, 70):inShortTrade?color.rgb(255, 82, 82, 70):na)


plotshape(long_condition, title='Buy', text='Andy Buy', style=shape.labelup, location=location.belowbar, color=color.new(color.green, 0), textcolor=color.new(color.white, 0), size=size.tiny)
plotshape(short_condition, title='Sell', text='Andy Sell', style=shape.labeldown, location=location.abovebar, color=color.new(color.red, 0), textcolor=color.new(color.white, 0), size=size.tiny)


// //atr > close *0.01* parameter

// // MONTHLY TABLE PERFORMANCE - Developed by @QuantNomad
// // *************************************************************************************************************************************************************************************************************************************************************************
// show_performance = input.bool(true, 'Show Monthly Performance ?', group='Performance - credits: @QuantNomad')
// prec = input(2, 'Return Precision', group='Performance - credits: @QuantNomad')

// if show_performance
//     new_month = month(time) != month(time[1])
//     new_year  = year(time)  != year(time[1])
    
//     eq = strategy.equity
    
//     bar_pnl = eq / eq[1] - 1
    
//     cur_month_pnl = 0.0
//     cur_year_pnl  = 0.0
    
//     // Current Monthly P&L
//     cur_month_pnl := new_month ? 0.0 : 
//                      (1 + cur_month_pnl[1]) * (1 + bar_pnl) - 1 
    
//     // Current Yearly P&L
//     cur_year_pnl := new_year ? 0.0 : 
//                      (1 + cur_year_pnl[1]) * (1 + bar_pnl) - 1  
    
//     // Arrays to store Yearly and Monthly P&Ls
//     var month_pnl  = array.new_float(0)
//     var month_time = array.new_int(0)
    
//     var year_pnl  = array.new_float(0)
//     var year_time = array.new_int(0)
    
//     last_computed = false
    
//     if (not na(cur_month_pnl[1]) and (new_month or barstate.islastconfirmedhistory))
//         if (last_computed[1])
//             array.pop(month_pnl)
//             array.pop(month_time)
            
//         array.push(month_pnl , cur_month_pnl[1])
//         array.push(month_time, time[1])
    
//     if (not na(cur_year_pnl[1]) and (new_year or barstate.islastconfirmedhistory))
//         if (last_computed[1])
//             array.pop(year_pnl)
//             array.pop(year_time)
            
//         array.push(year_pnl , cur_year_pnl[1])
//         array.push(year_time, time[1])
    
//     last_computed := barstate.islastconfirmedhistory ? true : nz(last_computed[1])
    
//     // Monthly P&L Table    
//     var monthly_table = table(na)
    
//     if (barstate.islastconfirmedhistory)
//         monthly_table := table.new(position.bottom_center, columns = 14, rows = array.size(year_pnl) + 1, border_width = 1)
    
//         table.cell(monthly_table, 0,  0, "",     bgcolor = #cccccc)
//         table.cell(monthly_table, 1,  0, "Jan",  bgcolor = #cccccc)
//         table.cell(monthly_table, 2,  0, "Feb",  bgcolor = #cccccc)
//         table.cell(monthly_table, 3,  0, "Mar",  bgcolor = #cccccc)
//         table.cell(monthly_table, 4,  0, "Apr",  bgcolor = #cccccc)
//         table.cell(monthly_table, 5,  0, "May",  bgcolor = #cccccc)
//         table.cell(monthly_table, 6,  0, "Jun",  bgcolor = #cccccc)
//         table.cell(monthly_table, 7,  0, "Jul",  bgcolor = #cccccc)
//         table.cell(monthly_table, 8,  0, "Aug",  bgcolor = #cccccc)
//         table.cell(monthly_table, 9,  0, "Sep",  bgcolor = #cccccc)
//         table.cell(monthly_table, 10, 0, "Oct",  bgcolor = #cccccc)
//         table.cell(monthly_table, 11, 0, "Nov",  bgcolor = #cccccc)
//         table.cell(monthly_table, 12, 0, "Dec",  bgcolor = #cccccc)
//         table.cell(monthly_table, 13, 0, "Year", bgcolor = #999999)
    
    
//         for yi = 0 to array.size(year_pnl) - 1
//             table.cell(monthly_table, 0,  yi + 1, str.tostring(year(array.get(year_time, yi))), bgcolor = #cccccc)
            
//             y_color = array.get(year_pnl, yi) > 0 ? color.new(color.teal, transp = 40) : color.new(color.gray, transp = 40)
//             table.cell(monthly_table, 13, yi + 1, str.tostring(math.round(array.get(year_pnl, yi) * 100, prec)), bgcolor = y_color, text_color=color.new(color.white, 0))
            
//         for mi = 0 to array.size(month_time) - 1
//             m_row   = year(array.get(month_time, mi))  - year(array.get(year_time, 0)) + 1
//             m_col   = month(array.get(month_time, mi)) 
//             m_color = array.get(month_pnl, mi) > 0 ? color.new(color.teal, transp = 40) : color.new(color.gray, transp = 40)
            
//             table.cell(monthly_table, m_col, m_row, str.tostring(math.round(array.get(month_pnl, mi) * 100, prec)), bgcolor = m_color, text_color=color.new(color.white, 0))