Strategi kuantitatif berosilasi yang digerakkan oleh lalu lintas


Tanggal Pembuatan: 2023-12-05 11:35:50 Akhirnya memodifikasi: 2023-12-05 11:35:50
menyalin: 0 Jumlah klik: 763
1
fokus pada
1619
Pengikut

Strategi kuantitatif berosilasi yang digerakkan oleh lalu lintas

Ini adalah strategi perdagangan berdasarkan indikator kuantitatif Klinger. Strategi ini menangkap perubahan kekuatan jual beli dalam fluktuasi harga untuk menemukan titik balik tren pasar. Kelebihannya adalah sensitivitas dan akurasi yang dapat diterapkan pada analisis jangka pendek dan jangka panjang.

Prinsip Strategi

Strategi ini didasarkan pada teori berikut:

  1. Jangkauan harga (highest price - lowest price) mencerminkan amplitudo fluktuasi harga, sedangkan volume transaksi adalah pendorong fluktuasi harga.
  2. Harga tertinggi + harga terendah + harga penutupan + jumlah hari sebelumnya, menunjukkan peningkatan kekuatan pembeli, karakteristik akumulasi; sebaliknya adalah karakteristik distribusi.
  3. Perubahan volume transaksi yang terus menerus mencerminkan perubahan kekuatan dari kedua belah pihak.

Menurut teori-teori ini, strategi ini menghitung Klinger kuantitatif indikator dengan membandingkan jumlah harga close out dengan hubungan ukuran hari sebelumnya, menggabungkan perubahan volume perdagangan, dan melakukan lebih banyak ketika indikator melewati rata-rata sendiri, dan kosong ketika melewati.

Secara khusus, strategi ini mencakup tiga indikator:

  1. xTrend: Menggambarkan kekuatan pergerakan harga, berdasarkan perbandingan antara total harga akhir hari dan hari sebelumnya.
  2. xFast: rata-rata kecepatan xTrend, dengan parameter 34 hari.
  3. xSlow: garis rata-rata kecepatan lambat xTrend dengan parameter 55 hari.

Kemudian menghitung nilai diferensial xKVO sebagai indikator perdagangan. Bila di atasnya melewati 13 hari rata-rata xTrigger, lakukan lebih banyak, dan saat di bawahnya, lakukan lebih sedikit.

Keunggulan Strategis

Keuntungan terbesar dari strategi ini adalah bahwa ia cocok untuk analisis jangka pendek dan jangka panjang. Pengaturan parameter rata-rata lambat membuatnya dapat menangkap perubahan tren jangka pendek dengan cepat. Pada saat yang sama, ia juga dapat menyaring kebisingan pasar jangka pendek dan menangkap tren jangka panjang.

Selain itu, strategi ini hanya didasarkan pada perhitungan harga dan volume transaksi. Tidak perlu menghitung indikator matematika yang rumit, perhitungan yang efisien, cocok untuk aplikasi desktop.

Risiko dan Solusinya

Risiko terbesar dari strategi ini adalah bahwa indikator volume transaksi memiliki kemampuan yang lemah untuk mendeteksi terobosan palsu. Strategi ini mungkin akan mengirimkan sinyal melakukan lebih dari yang salah ketika ada penyesuaian harga jangka pendek ke atas untuk menembus garis rata-rata.

Selain itu, strategi ini lebih sensitif terhadap pengaturan parameter. Parameter untuk rata-rata cepat dan lambat dan rata-rata perdagangan perlu diuji dan dioptimalkan berulang kali untuk mendapatkan kinerja terbaik.

Optimasi Strategi

Berdasarkan analisis risiko, kami dapat mengoptimalkan strategi ini lebih lanjut dalam beberapa hal:

  1. Meningkatkan mekanisme stop loss. Stop loss keluar ketika harga kembali proporsi tertentu, dapat mengurangi gangguan kebisingan dari perubahan jangka pendek.

  2. Menambahkan indikator penyaringan tren. Menggunakan indikator moving average seperti MACD untuk menilai pergerakan pasar secara keseluruhan dan menghindari tersesatnya arah dalam situasi yang bergolak.

  3. Optimalkan pengaturan parameter. Temukan kombinasi parameter yang optimal melalui data retrospeksi sejarah untuk meningkatkan stabilitas strategi.

  4. Pengelolaan dana di masa depan yang dioptimalkan, seperti penyesuaian posisi secara dinamis berdasarkan situasi win/loss.

Meringkaskan

Strategi ini menangkap perubahan kekuatan jual beli pasar dengan membandingkan hubungan jumlah harga dengan volume transaksi, sambil mempertimbangkan sensitivitas dan stabilitas. Dengan pengaturan parameter optimasi dan penilaian tren, kinerja yang baik dapat diperoleh. Namun, pedagang harus waspada terhadap risiko yang ditimbulkan oleh keterbatasan indikator itu sendiri.

||

This is a trading strategy based on the Klinger Volume Oscillator. It captures the shifts in buying and selling forces during price fluctuations to identify turning points in market trends. The advantages are sensitivity and accuracy for both short-term and long-term analysis. However, some risks need to be noticed.

Strategy Logic

The strategy is built on the following assumptions:

  1. The price range (high-low) reflects the amplitude of price swings, while volume is the driving force behind price movements.
  2. If today’s sum of high + low + close is greater than yesterday’s, it indicates strengthened buying forces and accumulation; the opposite suggests distribution.
  3. Continuous changes in volume reflect shifts in the forces of buyers and sellers.

Based on the theories, the strategy calculates the Klinger Volume Oscillator by comparing the relationship between today’s sum of closing prices and yesterday’s, combined with changes in volume. It goes long when the indicator crosses above its moving average line, and goes short on crosses below.

Specifically, there are three main indicators involved:

  1. xTrend: reflects the force of price trend based on comparison of sum of prices between days.
  2. xFast: fast EMA of xTrend with period of 34.
  3. xSlow: slow EMA of xTrend with period of 55.

The difference xKVO is then calculated as the trading indicator. Go long on crossing above 13-day EMA xTrigger, and short on crossing below.

Advantages

The greatest advantage is being suitable for both short-term and long-term analysis simultaneously. The fast and slow EMA settings make it sensitive to catch short-term swings, while also filtering out market noise and capturing long-term trends, which most price-based indicators struggle with.

In addition, it is purely based on price and volume data without complex math. This makes it highly efficient for actual trading applications.

Risks & Solutions

The main risk is weaker ability to distinguish false breakouts. Short-term price adjustments may generate wrong long signals. Other factors should be considered to determine the trend.

Also, the strategy is sensitive towards parameter tuning. Optimization is required on the EMAs and trigger line to find best performance.

Strategy Optimization

Some aspects that could further optimize the strategy according to the risks:

  1. Add stop loss mechanisms. Exiting at some percentage retracement reduces noise interference.

  2. Add trend filtering with indicators like MACD to avoid directional mistakes in ranging markets.

  3. Optimize parameter sets through backtests to improve robustness.

  4. Capital management optimization such as dynamic position sizing based on stop loss/take profit levels.

Conclusion

Overall, the strategy captures shifts in market forces by comparing price quantities and volumes for both sensitivity and stability. It can perform well given optimized parameters and trend validation, but inherent limitations of volume indicators can still pose risks for traders.

[/trans]

Kode Sumber Strategi
/*backtest
start: 2022-11-28 00:00:00
end: 2023-12-04 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=2
////////////////////////////////////////////////////////////
//  Copyright by HPotter v1.0 30/08/2017
// The Klinger Oscillator (KO) was developed by Stephen J. Klinger. Learning 
// from prior research on volume by such well-known technicians as Joseph Granville, 
// Larry Williams, and Marc Chaikin, Mr. Klinger set out to develop a volume-based 
// indicator to help in both short- and long-term analysis.
// The KO was developed with two seemingly opposite goals in mind: to be sensitive 
// enough to signal short-term tops and bottoms, yet accurate enough to reflect the 
// long-term flow of money into and out of a security.
// The KO is based on the following tenets:
// Price range (i.e. High - Low) is a measure of movement and volume is the force behind 
// the movement. The sum of High + Low + Close defines a trend. Accumulation occurs when 
// today's sum is greater than the previous day's. Conversely, distribution occurs when 
// today's sum is less than the previous day's. When the sums are equal, the existing trend 
// is maintained.
// Volume produces continuous intra-day changes in price reflecting buying and selling pressure. 
// The KO quantifies the difference between the number of shares being accumulated and distributed 
// each day as "volume force". A strong, rising volume force should accompany an uptrend and then 
// gradually contract over time during the latter stages of the uptrend and the early stages of 
// the following downtrend. This should be followed by a rising volume force reflecting some 
// accumulation before a bottom develops.
//
// You can change long to short in the Input Settings
// Please, use it only for learning or paper trading. 
////////////////////////////////////////////////////////////
strategy(title="Klinger Volume Oscillator (KVO)", shorttitle="KVO")
TrigLen = input(13, minval=1)
FastX = input(34, minval=1)
SlowX = input(55, minval=1)
reverse = input(false, title="Trade reverse")
hline(0, color=gray, linestyle=line)
xTrend = iff(hlc3 > hlc3[1], volume * 100, -volume * 100)
xFast = ema(xTrend, FastX)
xSlow = ema(xTrend, SlowX)
xKVO = xFast - xSlow
xTrigger = ema(xKVO, TrigLen)
pos = iff(xKVO > xTrigger, 1,
	   iff(xKVO < xTrigger, -1, nz(pos[1], 0))) 
possig = iff(reverse and pos == 1, -1,
          iff(reverse and pos == -1, 1, pos))	   
if (possig == 1) 
    strategy.entry("Long", strategy.long)
if (possig == -1)
    strategy.entry("Short", strategy.short)	   	    
barcolor(possig == -1 ? red: possig == 1 ? green : blue )  
plot(xKVO, color=blue, title="KVO")
plot(xTrigger, color=red, title="Trigger")