
Strategi ini adalah strategi stop channel yang didasarkan pada indikator EMA. Strategi ini menggabungkan beberapa indikator teknologi utama seperti penilaian tren, pelacakan saluran, dan stop dinamis, untuk menentukan siklus bullish dan bearish dengan menilai hubungan urutan EMA, dan digabungkan dengan pelacakan saluran ATR untuk mencapai stop, yang memungkinkan titik stop untuk terus melacak pergerakan harga.
Strategi ini didasarkan pada tiga periode EMA yang berbeda.
Setelah menentukan siklus bullish dan bearish, strategi menggunakan harga K-line yang diambil dari SMMA, digabungkan dengan kelipatan indikator ATR sebagai ruang gerbang. Sinyal perdagangan akan dikirim hanya ketika harga menembus saluran tersebut. Selain itu, setelah sinyal perdagangan dikirim, mekanisme pelacakan stop loss ATR dinamis akan diaktifkan.
Beberapa keuntungan utama dari strategi ini adalah:
Risiko utama dari strategi ini berkonsentrasi pada permasalahan over-trading yang mungkin disebabkan oleh pengaturan parameter yang tidak tepat dan masalah seperti stop loss yang terjatuh. Strategi ini dapat dioptimalkan dari beberapa aspek berikut:
Strategi ini mengintegrasikan beberapa indikator dan metode teknologi utama seperti penilaian tren, perdagangan saluran, dan stop loss dinamis, untuk membentuk sistem strategi stop loss yang lebih lengkap. Ada banyak ruang untuk pengoptimalan dalam hal optimasi parameter dan pengendalian risiko. Strategi ini cocok untuk investor dengan persyaratan stop loss yang tinggi.
/*backtest
start: 2023-12-10 00:00:00
end: 2023-12-12 04:00:00
period: 1m
basePeriod: 1m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © kgynofomo
//@version=5
strategy(title="[Salavi] | Andy Advance Pro Strategy [ETH|M15]",overlay = true, pyramiding = 1,initial_capital = 10000, default_qty_type = strategy.cash,default_qty_value = 10000)
ema_short = ta.ema(close,5)
ema_middle = ta.ema(close,20)
ema_long = ta.ema(close,40)
cycle_1 = ema_short>ema_middle and ema_middle>ema_long
cycle_2 = ema_middle>ema_short and ema_short>ema_long
cycle_3 = ema_middle>ema_long and ema_long>ema_short
cycle_4 = ema_long>ema_middle and ema_middle>ema_short
cycle_5 = ema_long>ema_short and ema_short>ema_middle
cycle_6 = ema_short>ema_long and ema_long>ema_middle
bull_cycle = cycle_1 or cycle_2 or cycle_3
bear_cycle = cycle_4 or cycle_5 or cycle_6
// label.new("cycle_1")
// bgcolor(color=cycle_1?color.rgb(82, 255, 148, 60):na)
// bgcolor(color=cycle_2?color.rgb(82, 255, 148, 70):na)
// bgcolor(color=cycle_3?color.rgb(82, 255, 148, 80):na)
// bgcolor(color=cycle_4?color.rgb(255, 82, 82, 80):na)
// bgcolor(color=cycle_5?color.rgb(255, 82, 82, 70):na)
// bgcolor(color=cycle_6?color.rgb(255, 82, 82, 60):na)
// Inputs
a = input(2, title='Key Vaule. \'This changes the sensitivity\'')
c = input(7, title='ATR Period')
h = false
xATR = ta.atr(c)
nLoss = a * xATR
src = h ? request.security(ticker.heikinashi(syminfo.tickerid), timeframe.period, close, lookahead=barmerge.lookahead_off) : close
xATRTrailingStop = 0.0
iff_1 = src > nz(xATRTrailingStop[1], 0) ? src - nLoss : src + nLoss
iff_2 = src < nz(xATRTrailingStop[1], 0) and src[1] < nz(xATRTrailingStop[1], 0) ? math.min(nz(xATRTrailingStop[1]), src + nLoss) : iff_1
xATRTrailingStop := src > nz(xATRTrailingStop[1], 0) and src[1] > nz(xATRTrailingStop[1], 0) ? math.max(nz(xATRTrailingStop[1]), src - nLoss) : iff_2
pos = 0
iff_3 = src[1] > nz(xATRTrailingStop[1], 0) and src < nz(xATRTrailingStop[1], 0) ? -1 : nz(pos[1], 0)
pos := src[1] < nz(xATRTrailingStop[1], 0) and src > nz(xATRTrailingStop[1], 0) ? 1 : iff_3
xcolor = pos == -1 ? color.red : pos == 1 ? color.green : color.blue
ema = ta.ema(src, 1)
above = ta.crossover(ema, xATRTrailingStop)
below = ta.crossover(xATRTrailingStop, ema)
buy = src > xATRTrailingStop and above
sell = src < xATRTrailingStop and below
barbuy = src > xATRTrailingStop
barsell = src < xATRTrailingStop
atr = ta.atr(14)
atr_length = input.int(25)
atr_rsi = ta.rsi(atr,atr_length)
atr_valid = atr_rsi>50
long_condition = buy and bull_cycle and atr_valid
short_condition = sell and bear_cycle and atr_valid
Exit_long_condition = short_condition
Exit_short_condition = long_condition
if long_condition
strategy.entry("Andy Buy",strategy.long, limit=close,comment="Andy Buy Here")
if Exit_long_condition
strategy.close("Andy Buy",comment="Andy Buy Out")
// strategy.entry("Andy fandan Short",strategy.short, limit=close,comment="Andy 翻單 short Here")
// strategy.close("Andy fandan Buy",comment="Andy short Out")
if short_condition
strategy.entry("Andy Short",strategy.short, limit=close,comment="Andy short Here")
// strategy.exit("STR","Long",stop=longstoploss)
if Exit_short_condition
strategy.close("Andy Short",comment="Andy short Out")
// strategy.entry("Andy fandan Buy",strategy.long, limit=close,comment="Andy 翻單 Buy Here")
// strategy.close("Andy fandan Short",comment="Andy Buy Out")
inLongTrade = strategy.position_size > 0
inLongTradecolor = #58D68D
notInTrade = strategy.position_size == 0
inShortTrade = strategy.position_size < 0
// bgcolor(color = inLongTrade?color.rgb(76, 175, 79, 70):inShortTrade?color.rgb(255, 82, 82, 70):na)
plotshape(close!=0,location = location.bottom,color = inLongTrade?color.rgb(76, 175, 79, 70):inShortTrade?color.rgb(255, 82, 82, 70):na)
plotshape(long_condition, title='Buy', text='Andy Buy', style=shape.labelup, location=location.belowbar, color=color.new(color.green, 0), textcolor=color.new(color.white, 0), size=size.tiny)
plotshape(short_condition, title='Sell', text='Andy Sell', style=shape.labeldown, location=location.abovebar, color=color.new(color.red, 0), textcolor=color.new(color.white, 0), size=size.tiny)
// //atr > close *0.01* parameter
// // MONTHLY TABLE PERFORMANCE - Developed by @QuantNomad
// // *************************************************************************************************************************************************************************************************************************************************************************
// show_performance = input.bool(true, 'Show Monthly Performance ?', group='Performance - credits: @QuantNomad')
// prec = input(2, 'Return Precision', group='Performance - credits: @QuantNomad')
// if show_performance
// new_month = month(time) != month(time[1])
// new_year = year(time) != year(time[1])
// eq = strategy.equity
// bar_pnl = eq / eq[1] - 1
// cur_month_pnl = 0.0
// cur_year_pnl = 0.0
// // Current Monthly P&L
// cur_month_pnl := new_month ? 0.0 :
// (1 + cur_month_pnl[1]) * (1 + bar_pnl) - 1
// // Current Yearly P&L
// cur_year_pnl := new_year ? 0.0 :
// (1 + cur_year_pnl[1]) * (1 + bar_pnl) - 1
// // Arrays to store Yearly and Monthly P&Ls
// var month_pnl = array.new_float(0)
// var month_time = array.new_int(0)
// var year_pnl = array.new_float(0)
// var year_time = array.new_int(0)
// last_computed = false
// if (not na(cur_month_pnl[1]) and (new_month or barstate.islastconfirmedhistory))
// if (last_computed[1])
// array.pop(month_pnl)
// array.pop(month_time)
// array.push(month_pnl , cur_month_pnl[1])
// array.push(month_time, time[1])
// if (not na(cur_year_pnl[1]) and (new_year or barstate.islastconfirmedhistory))
// if (last_computed[1])
// array.pop(year_pnl)
// array.pop(year_time)
// array.push(year_pnl , cur_year_pnl[1])
// array.push(year_time, time[1])
// last_computed := barstate.islastconfirmedhistory ? true : nz(last_computed[1])
// // Monthly P&L Table
// var monthly_table = table(na)
// if (barstate.islastconfirmedhistory)
// monthly_table := table.new(position.bottom_center, columns = 14, rows = array.size(year_pnl) + 1, border_width = 1)
// table.cell(monthly_table, 0, 0, "", bgcolor = #cccccc)
// table.cell(monthly_table, 1, 0, "Jan", bgcolor = #cccccc)
// table.cell(monthly_table, 2, 0, "Feb", bgcolor = #cccccc)
// table.cell(monthly_table, 3, 0, "Mar", bgcolor = #cccccc)
// table.cell(monthly_table, 4, 0, "Apr", bgcolor = #cccccc)
// table.cell(monthly_table, 5, 0, "May", bgcolor = #cccccc)
// table.cell(monthly_table, 6, 0, "Jun", bgcolor = #cccccc)
// table.cell(monthly_table, 7, 0, "Jul", bgcolor = #cccccc)
// table.cell(monthly_table, 8, 0, "Aug", bgcolor = #cccccc)
// table.cell(monthly_table, 9, 0, "Sep", bgcolor = #cccccc)
// table.cell(monthly_table, 10, 0, "Oct", bgcolor = #cccccc)
// table.cell(monthly_table, 11, 0, "Nov", bgcolor = #cccccc)
// table.cell(monthly_table, 12, 0, "Dec", bgcolor = #cccccc)
// table.cell(monthly_table, 13, 0, "Year", bgcolor = #999999)
// for yi = 0 to array.size(year_pnl) - 1
// table.cell(monthly_table, 0, yi + 1, str.tostring(year(array.get(year_time, yi))), bgcolor = #cccccc)
// y_color = array.get(year_pnl, yi) > 0 ? color.new(color.teal, transp = 40) : color.new(color.gray, transp = 40)
// table.cell(monthly_table, 13, yi + 1, str.tostring(math.round(array.get(year_pnl, yi) * 100, prec)), bgcolor = y_color, text_color=color.new(color.white, 0))
// for mi = 0 to array.size(month_time) - 1
// m_row = year(array.get(month_time, mi)) - year(array.get(year_time, 0)) + 1
// m_col = month(array.get(month_time, mi))
// m_color = array.get(month_pnl, mi) > 0 ? color.new(color.teal, transp = 40) : color.new(color.gray, transp = 40)
// table.cell(monthly_table, m_col, m_row, str.tostring(math.round(array.get(month_pnl, mi) * 100, prec)), bgcolor = m_color, text_color=color.new(color.white, 0))