Positive Channel EMA Trailing Stop 전략


생성 날짜: 2023-12-18 12:10:45 마지막으로 수정됨: 2023-12-18 12:10:45
복사: 0 클릭수: 668
avatar of ChaoZhang ChaoZhang
1
집중하다
1621
수행원

Positive Channel EMA Trailing Stop 전략

개요

이 전략은 EMA 지표에 기반한 채널형 중지 전략이다. 그것은 트렌드 판단, 채널 추적 및 동적 중단과 같은 여러 주류 기술 지표를 통합하여, EMA의 순서 관계를 판단하여 황무지 주기를 결정하고, ATR 채널 추적과 결합하여 중단을 실현하여, 중단 지점은 가격 운행을 지속적으로 추적할 수 있게 한다. 이러한 중지 사고는 적극적이며, 과도하게 급진적인 중단이 뚫린 확률을 효과적으로 방지한다.

전략 원칙

전략은 주로 3개의 다른 주기의 EMA 곡선을 통해 황소 곰의 상태를 판단한다. 구체적인 판단 규칙은 다음과 같다:

  • EMA5> EMA20> EMA40은 황소시장주기입니다.
  • EMA20>EMA5>EMA40은 소시장주기입니다.
  • EMA20>EMA40>EMA5는 황소시장 주기입니다.
  • EMA40>EMA20>EMA5는
  • EMA40>EMA5>EMA20은
  • EMA5>EMA40>EMA20은 곰 시장 주기입니다.

황소와 곰의 주기를 결정한 후, 전략은 SMMA 샘플링 K선 가격을 사용하여 ATR 지표의 배수를 통로 범위에 사용합니다. 가격이 통로를 뚫었을 때 거래 신호가 발송됩니다. 또한 거래 신호가 발송 된 후, ATR 동적 추적 중지 메커니즘이 활성화되어 중단 위치를 실시간으로 조정하여 중단 지점이 가격과 함께 작동 할 수 있도록 하여 중단의 효과를 향상시킵니다.

전략적 이점

이 전략의 주요 장점은 다음과 같습니다.

  1. 시장의 전환점을 파악하기 위해 EMA를 사용하여 투어 회기를 판단합니다.
  2. ATR 통로에 기반한 입점 포인트를 구축하여 격동적인 시장을 피하십시오.
  3. ATR 동적 추적 중지, 수익을 최대화하고 위험을 효과적으로 제어할 수 있습니다.

위험과 최적화

이 전략의 주요 위험은 잘못된 매개 변수 설정으로 인해 발생할 수 있는 과도한 거래와 스톱 로즈가 뚫리는 등의 문제에 집중된다. 다음과 같은 몇 가지 측면에서 최적화할 수 있다:

  1. 최적의 EMA 주기 변수 모음을 최적화하여 최적의 변수 짝을 찾습니다.
  2. ATR 배수 크기를 최적화하여 너무 가까운 또는 너무 먼 정지 손실을 방지합니다.
  3. 다른 필터링 지표를 추가하여, 흔들림 속의 오류를 방지합니다.

요약하다

이 전략은 트렌드 판단, 채널 거래 및 동적 중단과 같은 여러 주요 기술 지표와 방법을 통합하여 더 완전한 중단 거래 전략 시스템을 형성합니다. 변수 최적화 및 위험 제어 측면에서 많은 최적화 공간이 있습니다. 이 전략은 높은 중단 요구 사항에 대한 투자자에게 적합합니다.

전략 소스 코드
/*backtest
start: 2023-12-10 00:00:00
end: 2023-12-12 04:00:00
period: 1m
basePeriod: 1m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © kgynofomo

//@version=5
strategy(title="[Salavi] | Andy Advance Pro Strategy [ETH|M15]",overlay = true, pyramiding = 1,initial_capital = 10000, default_qty_type = strategy.cash,default_qty_value = 10000)

ema_short = ta.ema(close,5)
ema_middle = ta.ema(close,20)
ema_long = ta.ema(close,40)

cycle_1 = ema_short>ema_middle and ema_middle>ema_long
cycle_2 = ema_middle>ema_short and ema_short>ema_long
cycle_3 = ema_middle>ema_long and ema_long>ema_short
cycle_4 = ema_long>ema_middle and ema_middle>ema_short
cycle_5 = ema_long>ema_short and ema_short>ema_middle
cycle_6 = ema_short>ema_long and ema_long>ema_middle

bull_cycle = cycle_1 or cycle_2 or cycle_3
bear_cycle = cycle_4 or cycle_5 or cycle_6
// label.new("cycle_1")
// bgcolor(color=cycle_1?color.rgb(82, 255, 148, 60):na)
// bgcolor(color=cycle_2?color.rgb(82, 255, 148, 70):na)
// bgcolor(color=cycle_3?color.rgb(82, 255, 148, 80):na)
// bgcolor(color=cycle_4?color.rgb(255, 82, 82, 80):na)
// bgcolor(color=cycle_5?color.rgb(255, 82, 82, 70):na)
// bgcolor(color=cycle_6?color.rgb(255, 82, 82, 60):na)

// Inputs
a = input(2, title='Key Vaule. \'This changes the sensitivity\'')
c = input(7, title='ATR Period')
h = false

xATR = ta.atr(c)
nLoss = a * xATR

src = h ? request.security(ticker.heikinashi(syminfo.tickerid), timeframe.period, close, lookahead=barmerge.lookahead_off) : close

xATRTrailingStop = 0.0
iff_1 = src > nz(xATRTrailingStop[1], 0) ? src - nLoss : src + nLoss
iff_2 = src < nz(xATRTrailingStop[1], 0) and src[1] < nz(xATRTrailingStop[1], 0) ? math.min(nz(xATRTrailingStop[1]), src + nLoss) : iff_1
xATRTrailingStop := src > nz(xATRTrailingStop[1], 0) and src[1] > nz(xATRTrailingStop[1], 0) ? math.max(nz(xATRTrailingStop[1]), src - nLoss) : iff_2

pos = 0
iff_3 = src[1] > nz(xATRTrailingStop[1], 0) and src < nz(xATRTrailingStop[1], 0) ? -1 : nz(pos[1], 0)
pos := src[1] < nz(xATRTrailingStop[1], 0) and src > nz(xATRTrailingStop[1], 0) ? 1 : iff_3

xcolor = pos == -1 ? color.red : pos == 1 ? color.green : color.blue

ema = ta.ema(src, 1)
above = ta.crossover(ema, xATRTrailingStop)
below = ta.crossover(xATRTrailingStop, ema)

buy = src > xATRTrailingStop and above
sell = src < xATRTrailingStop and below

barbuy = src > xATRTrailingStop
barsell = src < xATRTrailingStop




atr = ta.atr(14)
atr_length = input.int(25)
atr_rsi = ta.rsi(atr,atr_length)
atr_valid = atr_rsi>50

long_condition =  buy and bull_cycle and atr_valid
short_condition =  sell and bear_cycle and atr_valid

Exit_long_condition = short_condition
Exit_short_condition = long_condition

if long_condition
    strategy.entry("Andy Buy",strategy.long, limit=close,comment="Andy Buy Here")

if Exit_long_condition
    strategy.close("Andy Buy",comment="Andy Buy Out")
    // strategy.entry("Andy fandan Short",strategy.short, limit=close,comment="Andy 翻單 short Here")
    // strategy.close("Andy fandan Buy",comment="Andy short Out")


if short_condition
    strategy.entry("Andy Short",strategy.short, limit=close,comment="Andy short Here")


// strategy.exit("STR","Long",stop=longstoploss)
if Exit_short_condition
    strategy.close("Andy Short",comment="Andy short Out")
    // strategy.entry("Andy fandan Buy",strategy.long, limit=close,comment="Andy 翻單 Buy Here")
    // strategy.close("Andy fandan Short",comment="Andy Buy Out")




inLongTrade = strategy.position_size > 0
inLongTradecolor = #58D68D
notInTrade = strategy.position_size == 0
inShortTrade = strategy.position_size < 0

// bgcolor(color = inLongTrade?color.rgb(76, 175, 79, 70):inShortTrade?color.rgb(255, 82, 82, 70):na)
plotshape(close!=0,location = location.bottom,color = inLongTrade?color.rgb(76, 175, 79, 70):inShortTrade?color.rgb(255, 82, 82, 70):na)


plotshape(long_condition, title='Buy', text='Andy Buy', style=shape.labelup, location=location.belowbar, color=color.new(color.green, 0), textcolor=color.new(color.white, 0), size=size.tiny)
plotshape(short_condition, title='Sell', text='Andy Sell', style=shape.labeldown, location=location.abovebar, color=color.new(color.red, 0), textcolor=color.new(color.white, 0), size=size.tiny)


// //atr > close *0.01* parameter

// // MONTHLY TABLE PERFORMANCE - Developed by @QuantNomad
// // *************************************************************************************************************************************************************************************************************************************************************************
// show_performance = input.bool(true, 'Show Monthly Performance ?', group='Performance - credits: @QuantNomad')
// prec = input(2, 'Return Precision', group='Performance - credits: @QuantNomad')

// if show_performance
//     new_month = month(time) != month(time[1])
//     new_year  = year(time)  != year(time[1])
    
//     eq = strategy.equity
    
//     bar_pnl = eq / eq[1] - 1
    
//     cur_month_pnl = 0.0
//     cur_year_pnl  = 0.0
    
//     // Current Monthly P&L
//     cur_month_pnl := new_month ? 0.0 : 
//                      (1 + cur_month_pnl[1]) * (1 + bar_pnl) - 1 
    
//     // Current Yearly P&L
//     cur_year_pnl := new_year ? 0.0 : 
//                      (1 + cur_year_pnl[1]) * (1 + bar_pnl) - 1  
    
//     // Arrays to store Yearly and Monthly P&Ls
//     var month_pnl  = array.new_float(0)
//     var month_time = array.new_int(0)
    
//     var year_pnl  = array.new_float(0)
//     var year_time = array.new_int(0)
    
//     last_computed = false
    
//     if (not na(cur_month_pnl[1]) and (new_month or barstate.islastconfirmedhistory))
//         if (last_computed[1])
//             array.pop(month_pnl)
//             array.pop(month_time)
            
//         array.push(month_pnl , cur_month_pnl[1])
//         array.push(month_time, time[1])
    
//     if (not na(cur_year_pnl[1]) and (new_year or barstate.islastconfirmedhistory))
//         if (last_computed[1])
//             array.pop(year_pnl)
//             array.pop(year_time)
            
//         array.push(year_pnl , cur_year_pnl[1])
//         array.push(year_time, time[1])
    
//     last_computed := barstate.islastconfirmedhistory ? true : nz(last_computed[1])
    
//     // Monthly P&L Table    
//     var monthly_table = table(na)
    
//     if (barstate.islastconfirmedhistory)
//         monthly_table := table.new(position.bottom_center, columns = 14, rows = array.size(year_pnl) + 1, border_width = 1)
    
//         table.cell(monthly_table, 0,  0, "",     bgcolor = #cccccc)
//         table.cell(monthly_table, 1,  0, "Jan",  bgcolor = #cccccc)
//         table.cell(monthly_table, 2,  0, "Feb",  bgcolor = #cccccc)
//         table.cell(monthly_table, 3,  0, "Mar",  bgcolor = #cccccc)
//         table.cell(monthly_table, 4,  0, "Apr",  bgcolor = #cccccc)
//         table.cell(monthly_table, 5,  0, "May",  bgcolor = #cccccc)
//         table.cell(monthly_table, 6,  0, "Jun",  bgcolor = #cccccc)
//         table.cell(monthly_table, 7,  0, "Jul",  bgcolor = #cccccc)
//         table.cell(monthly_table, 8,  0, "Aug",  bgcolor = #cccccc)
//         table.cell(monthly_table, 9,  0, "Sep",  bgcolor = #cccccc)
//         table.cell(monthly_table, 10, 0, "Oct",  bgcolor = #cccccc)
//         table.cell(monthly_table, 11, 0, "Nov",  bgcolor = #cccccc)
//         table.cell(monthly_table, 12, 0, "Dec",  bgcolor = #cccccc)
//         table.cell(monthly_table, 13, 0, "Year", bgcolor = #999999)
    
    
//         for yi = 0 to array.size(year_pnl) - 1
//             table.cell(monthly_table, 0,  yi + 1, str.tostring(year(array.get(year_time, yi))), bgcolor = #cccccc)
            
//             y_color = array.get(year_pnl, yi) > 0 ? color.new(color.teal, transp = 40) : color.new(color.gray, transp = 40)
//             table.cell(monthly_table, 13, yi + 1, str.tostring(math.round(array.get(year_pnl, yi) * 100, prec)), bgcolor = y_color, text_color=color.new(color.white, 0))
            
//         for mi = 0 to array.size(month_time) - 1
//             m_row   = year(array.get(month_time, mi))  - year(array.get(year_time, 0)) + 1
//             m_col   = month(array.get(month_time, mi)) 
//             m_color = array.get(month_pnl, mi) > 0 ? color.new(color.teal, transp = 40) : color.new(color.gray, transp = 40)
            
//             table.cell(monthly_table, m_col, m_row, str.tostring(math.round(array.get(month_pnl, mi) * 100, prec)), bgcolor = m_color, text_color=color.new(color.white, 0))