Estratégia de Trailing Stop de EMA de canal positivo


Data de criação: 2023-12-18 12:10:45 última modificação: 2023-12-18 12:10:45
cópia: 0 Cliques: 668
1
focar em
1621
Seguidores

Estratégia de Trailing Stop de EMA de canal positivo

Visão geral

A estratégia é uma estratégia de parada de canal baseada em EMAs. Combina vários indicadores tecnológicos principais, como julgamento de tendências, rastreamento de canais e parada dinâmica, para determinar o ciclo de alta e baixa através do julgamento da relação de classificação do EMA, em combinação com o rastreamento do canal ATR para realizar paradas, permitindo que o ponto de parada acompanhe continuamente a operação do preço.

Princípio da estratégia

A estratégia é baseada em três curvas de EMA de diferentes períodos. As regras de avaliação são:

  • EMA5>EMA20>EMA40 é um ciclo de alta
  • EMA20>EMA5>EMA40 é um ciclo de alta
  • EMA20>EMA40>EMA5 é um ciclo de alta
  • EMA40> EMA20> EMA5 para o ciclo de baixa
  • EMA40>EMA5>EMA20 é um ciclo de baixa
  • EMA5>EMA40>EMA20 para o ciclo de baixa

Após a determinação do ciclo de alta e baixa, a estratégia usa o preço da linha K do padrão SMMA, combinado com o múltiplo do indicador ATR como o alcance do canal. Quando o preço quebra esse canal, o sinal de negociação é emitido. Além disso, após o sinal de negociação ser emitido, o mecanismo de rastreamento de perda dinâmica do ATR é ativado, ajustando a posição de perda em tempo real, garantindo que o ponto de perda possa acompanhar a operação do preço, aumentando a eficácia do stop loss.

Vantagens estratégicas

As principais vantagens desta estratégia são:

  1. Usando EMAs para determinar o ciclo de alta e baixa, pode-se capturar de forma eficaz os pontos de inflexão das tendências de mercado
  2. Construção de pontos de entrada baseados no canal ATR para evitar falhas na cidade em turbulência
  3. ATR: Dinâmico rastreamento de stop loss para maximizar lucros e controlar riscos

Risco e otimização

Os principais riscos da estratégia estão concentrados em problemas como o excesso de negociação, que pode ser causado por configurações de parâmetros inadequadas, bem como o rompimento do stop loss. Pode ser otimizado a partir dos seguintes aspectos:

  1. Optimizar a combinação de parâmetros do ciclo EMA para encontrar a melhor correspondência de parâmetros
  2. Optimizar o tamanho do múltiplo ATR para evitar que o stop-loss fique muito próximo ou muito longe
  3. Adição de outros indicadores de filtragem para evitar falhas em situações de tremores

Resumir

Esta estratégia integra vários indicadores e métodos tecnológicos principais, como o julgamento de tendências, o canal de negociação e o stop loss dinâmico, formando um sistema mais completo de estratégia de negociação de stop loss. Há muito espaço para otimização em termos de otimização de parâmetros e controle de risco.

Código-fonte da estratégia
/*backtest
start: 2023-12-10 00:00:00
end: 2023-12-12 04:00:00
period: 1m
basePeriod: 1m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © kgynofomo

//@version=5
strategy(title="[Salavi] | Andy Advance Pro Strategy [ETH|M15]",overlay = true, pyramiding = 1,initial_capital = 10000, default_qty_type = strategy.cash,default_qty_value = 10000)

ema_short = ta.ema(close,5)
ema_middle = ta.ema(close,20)
ema_long = ta.ema(close,40)

cycle_1 = ema_short>ema_middle and ema_middle>ema_long
cycle_2 = ema_middle>ema_short and ema_short>ema_long
cycle_3 = ema_middle>ema_long and ema_long>ema_short
cycle_4 = ema_long>ema_middle and ema_middle>ema_short
cycle_5 = ema_long>ema_short and ema_short>ema_middle
cycle_6 = ema_short>ema_long and ema_long>ema_middle

bull_cycle = cycle_1 or cycle_2 or cycle_3
bear_cycle = cycle_4 or cycle_5 or cycle_6
// label.new("cycle_1")
// bgcolor(color=cycle_1?color.rgb(82, 255, 148, 60):na)
// bgcolor(color=cycle_2?color.rgb(82, 255, 148, 70):na)
// bgcolor(color=cycle_3?color.rgb(82, 255, 148, 80):na)
// bgcolor(color=cycle_4?color.rgb(255, 82, 82, 80):na)
// bgcolor(color=cycle_5?color.rgb(255, 82, 82, 70):na)
// bgcolor(color=cycle_6?color.rgb(255, 82, 82, 60):na)

// Inputs
a = input(2, title='Key Vaule. \'This changes the sensitivity\'')
c = input(7, title='ATR Period')
h = false

xATR = ta.atr(c)
nLoss = a * xATR

src = h ? request.security(ticker.heikinashi(syminfo.tickerid), timeframe.period, close, lookahead=barmerge.lookahead_off) : close

xATRTrailingStop = 0.0
iff_1 = src > nz(xATRTrailingStop[1], 0) ? src - nLoss : src + nLoss
iff_2 = src < nz(xATRTrailingStop[1], 0) and src[1] < nz(xATRTrailingStop[1], 0) ? math.min(nz(xATRTrailingStop[1]), src + nLoss) : iff_1
xATRTrailingStop := src > nz(xATRTrailingStop[1], 0) and src[1] > nz(xATRTrailingStop[1], 0) ? math.max(nz(xATRTrailingStop[1]), src - nLoss) : iff_2

pos = 0
iff_3 = src[1] > nz(xATRTrailingStop[1], 0) and src < nz(xATRTrailingStop[1], 0) ? -1 : nz(pos[1], 0)
pos := src[1] < nz(xATRTrailingStop[1], 0) and src > nz(xATRTrailingStop[1], 0) ? 1 : iff_3

xcolor = pos == -1 ? color.red : pos == 1 ? color.green : color.blue

ema = ta.ema(src, 1)
above = ta.crossover(ema, xATRTrailingStop)
below = ta.crossover(xATRTrailingStop, ema)

buy = src > xATRTrailingStop and above
sell = src < xATRTrailingStop and below

barbuy = src > xATRTrailingStop
barsell = src < xATRTrailingStop




atr = ta.atr(14)
atr_length = input.int(25)
atr_rsi = ta.rsi(atr,atr_length)
atr_valid = atr_rsi>50

long_condition =  buy and bull_cycle and atr_valid
short_condition =  sell and bear_cycle and atr_valid

Exit_long_condition = short_condition
Exit_short_condition = long_condition

if long_condition
    strategy.entry("Andy Buy",strategy.long, limit=close,comment="Andy Buy Here")

if Exit_long_condition
    strategy.close("Andy Buy",comment="Andy Buy Out")
    // strategy.entry("Andy fandan Short",strategy.short, limit=close,comment="Andy 翻單 short Here")
    // strategy.close("Andy fandan Buy",comment="Andy short Out")


if short_condition
    strategy.entry("Andy Short",strategy.short, limit=close,comment="Andy short Here")


// strategy.exit("STR","Long",stop=longstoploss)
if Exit_short_condition
    strategy.close("Andy Short",comment="Andy short Out")
    // strategy.entry("Andy fandan Buy",strategy.long, limit=close,comment="Andy 翻單 Buy Here")
    // strategy.close("Andy fandan Short",comment="Andy Buy Out")




inLongTrade = strategy.position_size > 0
inLongTradecolor = #58D68D
notInTrade = strategy.position_size == 0
inShortTrade = strategy.position_size < 0

// bgcolor(color = inLongTrade?color.rgb(76, 175, 79, 70):inShortTrade?color.rgb(255, 82, 82, 70):na)
plotshape(close!=0,location = location.bottom,color = inLongTrade?color.rgb(76, 175, 79, 70):inShortTrade?color.rgb(255, 82, 82, 70):na)


plotshape(long_condition, title='Buy', text='Andy Buy', style=shape.labelup, location=location.belowbar, color=color.new(color.green, 0), textcolor=color.new(color.white, 0), size=size.tiny)
plotshape(short_condition, title='Sell', text='Andy Sell', style=shape.labeldown, location=location.abovebar, color=color.new(color.red, 0), textcolor=color.new(color.white, 0), size=size.tiny)


// //atr > close *0.01* parameter

// // MONTHLY TABLE PERFORMANCE - Developed by @QuantNomad
// // *************************************************************************************************************************************************************************************************************************************************************************
// show_performance = input.bool(true, 'Show Monthly Performance ?', group='Performance - credits: @QuantNomad')
// prec = input(2, 'Return Precision', group='Performance - credits: @QuantNomad')

// if show_performance
//     new_month = month(time) != month(time[1])
//     new_year  = year(time)  != year(time[1])
    
//     eq = strategy.equity
    
//     bar_pnl = eq / eq[1] - 1
    
//     cur_month_pnl = 0.0
//     cur_year_pnl  = 0.0
    
//     // Current Monthly P&L
//     cur_month_pnl := new_month ? 0.0 : 
//                      (1 + cur_month_pnl[1]) * (1 + bar_pnl) - 1 
    
//     // Current Yearly P&L
//     cur_year_pnl := new_year ? 0.0 : 
//                      (1 + cur_year_pnl[1]) * (1 + bar_pnl) - 1  
    
//     // Arrays to store Yearly and Monthly P&Ls
//     var month_pnl  = array.new_float(0)
//     var month_time = array.new_int(0)
    
//     var year_pnl  = array.new_float(0)
//     var year_time = array.new_int(0)
    
//     last_computed = false
    
//     if (not na(cur_month_pnl[1]) and (new_month or barstate.islastconfirmedhistory))
//         if (last_computed[1])
//             array.pop(month_pnl)
//             array.pop(month_time)
            
//         array.push(month_pnl , cur_month_pnl[1])
//         array.push(month_time, time[1])
    
//     if (not na(cur_year_pnl[1]) and (new_year or barstate.islastconfirmedhistory))
//         if (last_computed[1])
//             array.pop(year_pnl)
//             array.pop(year_time)
            
//         array.push(year_pnl , cur_year_pnl[1])
//         array.push(year_time, time[1])
    
//     last_computed := barstate.islastconfirmedhistory ? true : nz(last_computed[1])
    
//     // Monthly P&L Table    
//     var monthly_table = table(na)
    
//     if (barstate.islastconfirmedhistory)
//         monthly_table := table.new(position.bottom_center, columns = 14, rows = array.size(year_pnl) + 1, border_width = 1)
    
//         table.cell(monthly_table, 0,  0, "",     bgcolor = #cccccc)
//         table.cell(monthly_table, 1,  0, "Jan",  bgcolor = #cccccc)
//         table.cell(monthly_table, 2,  0, "Feb",  bgcolor = #cccccc)
//         table.cell(monthly_table, 3,  0, "Mar",  bgcolor = #cccccc)
//         table.cell(monthly_table, 4,  0, "Apr",  bgcolor = #cccccc)
//         table.cell(monthly_table, 5,  0, "May",  bgcolor = #cccccc)
//         table.cell(monthly_table, 6,  0, "Jun",  bgcolor = #cccccc)
//         table.cell(monthly_table, 7,  0, "Jul",  bgcolor = #cccccc)
//         table.cell(monthly_table, 8,  0, "Aug",  bgcolor = #cccccc)
//         table.cell(monthly_table, 9,  0, "Sep",  bgcolor = #cccccc)
//         table.cell(monthly_table, 10, 0, "Oct",  bgcolor = #cccccc)
//         table.cell(monthly_table, 11, 0, "Nov",  bgcolor = #cccccc)
//         table.cell(monthly_table, 12, 0, "Dec",  bgcolor = #cccccc)
//         table.cell(monthly_table, 13, 0, "Year", bgcolor = #999999)
    
    
//         for yi = 0 to array.size(year_pnl) - 1
//             table.cell(monthly_table, 0,  yi + 1, str.tostring(year(array.get(year_time, yi))), bgcolor = #cccccc)
            
//             y_color = array.get(year_pnl, yi) > 0 ? color.new(color.teal, transp = 40) : color.new(color.gray, transp = 40)
//             table.cell(monthly_table, 13, yi + 1, str.tostring(math.round(array.get(year_pnl, yi) * 100, prec)), bgcolor = y_color, text_color=color.new(color.white, 0))
            
//         for mi = 0 to array.size(month_time) - 1
//             m_row   = year(array.get(month_time, mi))  - year(array.get(year_time, 0)) + 1
//             m_col   = month(array.get(month_time, mi)) 
//             m_color = array.get(month_pnl, mi) > 0 ? color.new(color.teal, transp = 40) : color.new(color.gray, transp = 40)
            
//             table.cell(monthly_table, m_col, m_row, str.tostring(math.round(array.get(month_pnl, mi) * 100, prec)), bgcolor = m_color, text_color=color.new(color.white, 0))